enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proofs of convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_convergence_of...

    Each of the probabilities on the right-hand side converge to zero as n → ∞ by definition of the convergence of {X n} and {Y n} in probability to X and Y respectively. Taking the limit we conclude that the left-hand side also converges to zero, and therefore the sequence {(X n, Y n)} converges in probability to {(X, Y)}.

  3. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    As an example one may consider random variables with densities f n (x) = (1 + cos(2πnx))1 (0,1). These random variables converge in distribution to a uniform U(0, 1), whereas their densities do not converge at all. [3] However, according to Scheffé’s theorem, convergence of the probability density functions implies convergence in ...

  4. Rate of convergence - Wikipedia

    en.wikipedia.org/wiki/Rate_of_convergence

    The staggered geometric progression () =,,,,, …, / ⌊ ⌋, …, using the floor function ⌊ ⌋ that gives the largest integer that is less than or equal to , converges R-linearly to 0 with rate 1/2, but it does not converge Q-linearly; see the second plot of the figure below. The defining Q-linear convergence limits do not exist for this ...

  5. Slutsky's theorem - Wikipedia

    en.wikipedia.org/wiki/Slutsky's_theorem

    In probability theory, Slutsky's theorem extends some properties of algebraic operations on convergent sequences of real numbers to sequences of random variables. [1] The theorem was named after Eugen Slutsky. [2] Slutsky's theorem is also attributed to Harald Cramér. [3]

  6. Continuous mapping theorem - Wikipedia

    en.wikipedia.org/wiki/Continuous_mapping_theorem

    On the right-hand side, the first term converges to zero as n → ∞ for any fixed δ, by the definition of convergence in probability of the sequence {X n}. The second term converges to zero as δ → 0, since the set B δ shrinks to an empty set. And the last term is identically equal to zero by assumption of the theorem.

  7. Series acceleration - Wikipedia

    en.wikipedia.org/wiki/Series_acceleration

    Two classical techniques for series acceleration are Euler's transformation of series [1] and Kummer's transformation of series. [2] A variety of much more rapidly convergent and special-case tools have been developed in the 20th century, including Richardson extrapolation, introduced by Lewis Fry Richardson in the early 20th century but also known and used by Katahiro Takebe in 1722; the ...

  8. Cauchy's convergence test - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_convergence_test

    Cauchy's convergence test can only be used in complete metric spaces (such as and ), which are spaces where all Cauchy sequences converge. This is because we need only show that its elements become arbitrarily close to each other after a finite progression in the sequence to prove the series converges.

  9. Modes of convergence - Wikipedia

    en.wikipedia.org/wiki/Modes_of_convergence

    Absolute convergence implies Cauchy convergence of the sequence of partial sums (by the triangle inequality), which in turn implies absolute convergence of some grouping (not reordering). The sequence of partial sums obtained by grouping is a subsequence of the partial sums of the original series.