Search results
Results from the WOW.Com Content Network
Matrix-free conjugate gradient method has been applied in the non-linear elasto-plastic finite element solver. [7] Solving these equations requires the calculation of the Jacobian which is costly in terms of CPU time and storage. To avoid this expense, matrix-free methods are employed.
If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form. [1] [2] The state-space method is characterized by the algebraization of general system theory, which makes it possible to use Kronecker vector-matrix structures.
Input: initial guess x (0) to the solution, (diagonal dominant) matrix A, right-hand side vector b, convergence criterion Output: solution when convergence is reached Comments: pseudocode based on the element-based formula above k = 0 while convergence not reached do for i := 1 step until n do σ = 0 for j := 1 step until n do if j ≠ i then ...
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.
The soft-margin support vector machine described above is an example of an empirical risk minimization (ERM) algorithm for the hinge loss. Seen this way, support vector machines belong to a natural class of algorithms for statistical inference, and many of its unique features are due to the behavior of the hinge loss.
ARPACK, the ARnoldi PACKage, is a numerical software library written in FORTRAN 77 for solving large scale eigenvalue problems [1] in the matrix-free fashion.. The package is designed to compute a few eigenvalues and corresponding eigenvectors of large sparse or structured matrices, using the Implicitly Restarted Arnoldi Method (IRAM) or, in the case of symmetric matrices, the corresponding ...
A vector clock of a system of N processes is an array/vector of N logical clocks, one clock per process; a local "largest possible values" copy of the global clock-array is kept in each process. Denote V C i {\displaystyle VC_{i}} as the vector clock maintained by process i {\displaystyle i} , the clock updates proceed as follows: [ 1 ]
The matrix multiplication () yields the required square matrix and the matrix-vector product on the right hand side yields a vector of size . The result is a set of n {\displaystyle n} linear equations, which can be solved for δ {\displaystyle {\boldsymbol {\delta }}} .