Search results
Results from the WOW.Com Content Network
Matrix-free conjugate gradient method has been applied in the non-linear elasto-plastic finite element solver. [7] Solving these equations requires the calculation of the Jacobian which is costly in terms of CPU time and storage. To avoid this expense, matrix-free methods are employed.
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal. For such matrices, the half-vectorization is sometimes more useful than the ...
Lis (Library of Iterative Solvers for linear systems; pronounced lis]) is a scalable parallel software library to solve discretized linear equations and eigenvalue problems that mainly arise from the numerical solution of partial differential equations using iterative methods.
The method approximates the solution by the vector in a Krylov subspace with minimal residual. The Arnoldi iteration is used to find this vector. The GMRES method was developed by Yousef Saad and Martin H. Schultz in 1986. [1] It is a generalization and improvement of the MINRES method due to Paige and Saunders in 1975.
If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form. [1] [2] The state-space method is characterized by the algebraization of general system theory, which makes it possible to use Kronecker vector-matrix structures.
The eigenvalue solver package SLEPc contains C-implementations of many numerical methods for nonlinear eigenvalue problems. [ 5 ] The NLEVP collection of nonlinear eigenvalue problems is a MATLAB package containing many nonlinear eigenvalue problems with various properties.
For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.
Here ||·|| 2 is the matrix 2-norm, c n is a small constant depending on n, and ε denotes the unit round-off. One concern with the Cholesky decomposition to be aware of is the use of square roots. If the matrix being factorized is positive definite as required, the numbers under the square roots are always positive in exact arithmetic.