enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.

  3. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    The simplest probabilistic primality test is the Fermat primality test (actually a compositeness test). It works as follows: Given an integer n, choose some integer a coprime to n and calculate a n − 1 modulo n. If the result is different from 1, then n is composite. If it is 1, then n may be prime.

  4. Fermat pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Fermat_pseudoprime

    The false statement that all numbers that pass the Fermat primality test for base 2 are prime is called the Chinese hypothesis. The smallest base-2 Fermat pseudoprime is 341. It is not a prime, since it equals 11·31, but it satisfies Fermat's little theorem: 2 340 ≡ 1 (mod 341) and thus passes the Fermat primality test for the base 2.

  5. Strong pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Strong_pseudoprime

    For base 4, see OEIS: A020230, and for base 6 to 100, see OEIS: A020232 to OEIS: A020326. By testing the above conditions to several bases, one gets somewhat more powerful primality tests than by using one base alone. For example, there are only 13 numbers less than 25·10 9 that are strong pseudoprimes to bases 2, 3, and 5 simultaneously.

  6. Baillie–PSW primality test - Wikipedia

    en.wikipedia.org/wiki/Baillie–PSW_primality_test

    The Baillie–PSW primality test is a probabilistic or possibly deterministic primality testing algorithm that determines whether a number is composite or is a probable prime. It is named after Robert Baillie, Carl Pomerance , John Selfridge , and Samuel Wagstaff .

  7. Miller–Rabin primality test - Wikipedia

    en.wikipedia.org/wiki/Miller–Rabin_primality_test

    The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a polynomial-time deterministic ...

  8. Pépin's test - Wikipedia

    en.wikipedia.org/wiki/Pépin's_test

    Because of the sparsity of the Fermat numbers, the Pépin test has only been run eight times (on Fermat numbers whose primality statuses were not already known). [ 1 ] [ 2 ] [ 3 ] Mayer, Papadopoulos and Crandall speculate that in fact, because of the size of the still undetermined Fermat numbers, it will take considerable advances in ...

  9. Frobenius pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Frobenius_pseudoprime

    The computational cost of the Frobenius pseudoprimality test with respect to quadratic polynomials is roughly three times the cost of a strong pseudoprimality test (i.e. a single round of the Miller–Rabin primality test), 1.5 times that of a Lucas pseudoprimality test, and slightly more than a Baillie–PSW primality test.