enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.

  3. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    The simplest probabilistic primality test is the Fermat primality test (actually a compositeness test). It works as follows: Given an integer n, choose some integer a coprime to n and calculate a n − 1 modulo n. If the result is different from 1, then n is composite. If it is 1, then n may be prime.

  4. Miller–Rabin primality test - Wikipedia

    en.wikipedia.org/wiki/Miller–Rabin_primality_test

    The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a polynomial-time deterministic ...

  5. Four-engined jet aircraft - Wikipedia

    en.wikipedia.org/wiki/Four-engined_jet_aircraft

    This need extended into the beginning of the Jet Age, and combined with the limited thrust available from early jet engines, it was most practical to design large jet airliners with four engines. [ 4 ] [ 22 ] The first commercial jet aircraft was the four-engined De Havilland Comet , which first flew in 1949. [ 1 ]

  6. Probable prime - Wikipedia

    en.wikipedia.org/wiki/Probable_prime

    Probable primality is a basis for efficient primality testing algorithms, which find application in cryptography. These algorithms are usually probabilistic in nature. The idea is that while there are composite probable primes to base a for any fixed a , we may hope there exists some fixed P <1 such that for any given composite n , if we choose ...

  7. Strong pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Strong_pseudoprime

    For base 4, see OEIS: A020230, and for base 6 to 100, see OEIS: A020232 to OEIS: A020326. By testing the above conditions to several bases, one gets somewhat more powerful primality tests than by using one base alone. For example, there are only 13 numbers less than 25·10 9 that are strong pseudoprimes to bases 2, 3, and 5 simultaneously.

  8. AKS primality test - Wikipedia

    en.wikipedia.org/wiki/AKS_primality_test

    The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]

  9. Lucas primality test - Wikipedia

    en.wikipedia.org/wiki/Lucas_primality_test

    The algorithm can be written in pseudocode as follows: algorithm lucas_primality_test is input: n > 2, an odd integer to be tested for primality. k, a parameter that determines the accuracy of the test. output: prime if n is prime, otherwise composite or possibly composite. determine the prime factors of n−1.