Search results
Results from the WOW.Com Content Network
The sum of the labels is 11, smaller than could be achieved using only two labels. In graph theory, a sum coloring of a graph is a labeling of its vertices by positive integers, with no two adjacent vertices having equal labels, that minimizes the sum of the labels. The minimum sum that can be achieved is called the chromatic sum of the graph. [1]
Sum of the distance between the vertices and the difference of their colors is greater than k + 1, where k is a positive integer. Rank coloring If two vertices have the same color i, then every path between them contain a vertex with color greater than i Subcoloring An improper vertex coloring where every color class induces a union of cliques
A more general version of the theorem applies to list coloring: given any connected undirected graph with maximum degree Δ that is neither a clique nor an odd cycle, and a list of Δ colors for each vertex, it is possible to choose a color for each vertex from its list so that no two adjacent vertices have the same color. In other words, the ...
In computational complexity theory, the 3SUM problem asks if a given set of real numbers contains three elements that sum to zero. A generalized version, k-SUM, asks the same question on k elements, rather than simply 3. 3SUM can be easily solved in () time, and matching (⌈ / ⌉) lower bounds are known in some specialized models of computation (Erickson 1999).
The numbers of vertices in any two color classes differ by at most one. That is, the partition of vertices among the different colors is as uniform as possible. For instance, giving each vertex a distinct color would be equitable, but would typically use many more colors than are necessary in an optimal equitable coloring.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A root (or zero) of a chromatic polynomial, called a “chromatic root”, is a value x where (,) =. Chromatic roots have been very well studied, in fact, Birkhoff’s original motivation for defining the chromatic polynomial was to show that for planar graphs, P ( G , x ) > 0 {\displaystyle P(G,x)>0} for x ≥ 4.
AOL latest headlines, entertainment, sports, articles for business, health and world news.