Search results
Results from the WOW.Com Content Network
Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).
Living things incorporate inorganic carbon compounds into organic compounds through a network of processes (the carbon cycle) that begins with the conversion of carbon dioxide and a hydrogen source like water into simple sugars and other organic molecules by autotrophic organisms using light (photosynthesis) or other sources of energy.
The degradation rate of many organic compounds is limited by their bioavailability, which is the rate at which a substance is absorbed into a system or made available at the site of physiological activity, [11] as compounds must be released into solution before organisms can degrade them. The rate of biodegradation can be measured in a number ...
Autotrophs use energy from sunlight (photoautotrophs) or oxidation of inorganic compounds (lithoautotrophs) to convert inorganic carbon dioxide to organic carbon compounds and energy to sustain their life. Comparing the two in basic terms, heterotrophs (such as animals) eat either autotrophs (such as plants) or other heterotrophs, or both.
Lithotrophic bacteria cannot use, of course, their inorganic energy source as a carbon source for the synthesis of their cells. They choose one of three options: Lithoheterotrophs do not have the ability to fix carbon dioxide and must consume additional organic compounds in order to break them apart and use their carbon. Only a few bacteria are ...
All compounds are substances, but not all substances are compounds. A chemical compound can be either atoms bonded together in molecules or crystals in which atoms, molecules or ions form a crystalline lattice. Compounds based primarily on carbon and hydrogen atoms are called organic compounds, and all others are called inorganic compounds.
Venenivibrio stagnispumantis gains energy by oxidizing hydrogen gas.. In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules (usually carbon dioxide or methane) and nutrients into organic matter using the oxidation of inorganic compounds (e.g., hydrogen gas, hydrogen sulfide) or ferrous ions as a source of energy, rather than sunlight, as in ...
The structure of the molecule of urea is O=C(−NH 2) 2.The urea molecule is planar when in a solid crystal because of sp 2 hybridization of the N orbitals. [8] [9] It is non-planar with C 2 symmetry when in the gas phase [10] or in aqueous solution, [9] with C–N–H and H–N–H bond angles that are intermediate between the trigonal planar angle of 120° and the tetrahedral angle of 109.5°.