Search results
Results from the WOW.Com Content Network
Viscoelastic materials have elements of both of these properties and, as such, exhibit time-dependent strain. Whereas elasticity is usually the result of bond stretching along crystallographic planes in an ordered solid, viscosity is the result of the diffusion of atoms or molecules inside an amorphous material.
A Kelvin–Voigt material, also called a Voigt material, is the most simple model viscoelastic material showing typical rubbery properties. It is purely elastic on long timescales (slow deformation), but shows additional resistance to fast deformation.
In continuum mechanics, viscous damping is a formulation of the damping phenomena, in which the source of damping force is modeled as a function of the volume, shape, and velocity of an object traversing through a real fluid with viscosity. [1] Typical examples of viscous damping in mechanical systems include: Fluid films between surfaces
A Maxwell material is the most simple model viscoelastic material showing properties of a typical liquid. It shows viscous flow on the long timescale, but additional elastic resistance to fast deformations. [1] It is named for James Clerk Maxwell who proposed the model in 1867.
The ratio of the loss modulus to storage modulus in a viscoelastic material is defined as the , (cf. loss tangent), which provides a measure of damping in the material. tan δ {\displaystyle \tan \delta } can also be visualized as the tangent of the phase angle ( δ {\displaystyle \delta } ) between the storage and loss modulus.
The standard linear solid (SLS), also known as the Zener model after Clarence Zener, [1] is a method of modeling the behavior of a viscoelastic material using a linear combination of springs and dashpots to represent elastic and viscous components, respectively.
Sorbothane is a visco-elastic material, meaning that it exhibits properties of both liquids (viscous solutions) and solids (elastic materials), with a relaxation time of two seconds. [4] Because visco-elastic behavior is desirable in shock and vibration applications, many materials claim to be viscoelastic; however, many of these materials have ...
Viscous and viscoelastic damping usually have a relatively strong dependence on temperature. Friction dampers, while applicable over wide temperature ranges, may degrade with wear. Due to these limitations, attention has been focused on impact dampers, particularly for application in cryogenic environments or at elevated temperatures.