enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Even and odd functions - Wikipedia

    en.wikipedia.org/wiki/Even_and_odd_functions

    If a real function has a domain that is self-symmetric with respect to the origin, it may be uniquely decomposed as the sum of an even and an odd function, which are called respectively the even part (or the even component) and the odd part (or the odd component) of the function, and are defined by = + (), and = ().

  3. Parity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Parity_(mathematics)

    It is possible for a function to be neither odd nor even, and for the case f(x) = 0, to be both odd and even. [20] The Taylor series of an even function contains only terms whose exponent is an even number, and the Taylor series of an odd function contains only terms whose exponent is an odd number. [21]

  4. List of types of functions - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_functions

    Even function: is symmetric with respect to the Y-axis. Formally, for each x: f (x) = f (−x). Odd function: is symmetric with respect to the origin. Formally, for each x: f (−x) = −f (x). Relative to a binary operation and an order: Subadditive function: for which the value of f (x + y) is less than or equal to f (x) + f (y).

  5. Parity of a permutation - Wikipedia

    en.wikipedia.org/wiki/Parity_of_a_permutation

    The permutation is odd if and only if this factorization contains an odd number of even-length cycles. Another method for determining whether a given permutation is even or odd is to construct the corresponding permutation matrix and compute its determinant. The value of the determinant is the same as the parity of the permutation. Every ...

  6. Constant function - Wikipedia

    en.wikipedia.org/wiki/Constant_function

    An example of a constant function is y(x) = 4, because the value of y(x) is 4 regardless of the input value x. As a real-valued function of a real-valued argument, a constant function has the general form y(x) = c or just y = c. For example, the function y(x) = 4 is the specific constant function where the output value is c = 4.

  7. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    The number is taken to be 'odd' or 'even' according to whether its numerator is odd or even. Then the formula for the map is exactly the same as when the domain is the integers: an 'even' such rational is divided by 2; an 'odd' such rational is multiplied by 3 and then 1 is added.

  8. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x , denoted ⌈ x ⌉ or ceil( x ) .

  9. Half range Fourier series - Wikipedia

    en.wikipedia.org/wiki/Half_range_Fourier_series

    This allows the expansion of the function in a series solely of sines (odd) or cosines (even). The choice between odd and even is typically motivated by boundary conditions associated with a differential equation satisfied by (). Example. Calculate the half range Fourier sine series for the function () = ⁡ where < <.