enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This ...

  3. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    Each transform used for analysis (see list of Fourier-related transforms) has a corresponding inverse transform that can be used for synthesis. To use Fourier analysis, data must be equally spaced. Different approaches have been developed for analyzing unequally spaced data, notably the least-squares spectral analysis (LSSA) methods that use a ...

  4. Fourier number - Wikipedia

    en.wikipedia.org/wiki/Fourier_number

    The Fourier number can also be used in the study of mass diffusion, in which the thermal diffusivity is replaced by the mass diffusivity. The Fourier number is used in analysis of time-dependent transport phenomena , generally in conjunction with the Biot number if convection is present.

  5. Fourier sine and cosine series - Wikipedia

    en.wikipedia.org/wiki/Fourier_sine_and_cosine_series

    An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.

  6. Mathematical analysis - Wikipedia

    en.wikipedia.org/wiki/Mathematical_analysis

    Harmonic analysis is a branch of mathematical analysis concerned with the representation of functions and signals as the superposition of basic waves. This includes the study of the notions of Fourier series and Fourier transforms (Fourier analysis), and of their generalizations.

  7. Harmonic analysis - Wikipedia

    en.wikipedia.org/wiki/Harmonic_analysis

    Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.

  8. Fourier - Wikipedia

    en.wikipedia.org/wiki/Fourier

    Fourier series, a weighted sum of sinusoids having a common period, the result of Fourier analysis of a periodic function Fourier analysis , the description of functions as sums of sinusoids Fourier transform , the type of linear canonical transform that is the generalization of the Fourier series

  9. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    Fourier series decomposes periodic functions or periodic signals into the sum of a (possibly infinite) set of simple oscillating functions, namely sines and cosines (or complex exponentials). The study of Fourier series typically occurs and is handled within the branch mathematics > mathematical analysis > Fourier analysis .