enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kelvin wake pattern - Wikipedia

    en.wikipedia.org/wiki/Kelvin_wake_pattern

    All shock waves, that each by itself would have had an angle between 33° and 72°, are compressed into a narrow band of wake with angles between 15° and 19°, with the strongest constructive interference at the outer edge (angle arcsin(1/3) = 19.47°), placing the two arms of the V in the celebrated Kelvin wake pattern.

  3. Kelvin wave - Wikipedia

    en.wikipedia.org/wiki/Kelvin_wave

    There have been studies that connect equatorial Kelvin waves to coastal Kelvin waves. Moore (1968) found that as an equatorial Kelvin wave strikes an "eastern boundary", part of the energy is reflected in the form of planetary and gravity waves; and the remainder of the energy is carried poleward along the eastern boundary as coastal Kelvin waves.

  4. Tide-predicting machine - Wikipedia

    en.wikipedia.org/wiki/Tide-predicting_machine

    The first tide predicting machine (TPM) was built in 1872 by the Légé Engineering Company. [11] A model of it was exhibited at the British Association meeting in 1873 [12] (for computing 8 tidal components), followed in 1875-76 by a machine on a slightly larger scale (for computing 10 tidal components), was designed by Sir William Thomson (who later became Lord Kelvin). [13]

  5. Lord Kelvin - Wikipedia

    en.wikipedia.org/wiki/Lord_Kelvin

    In 1884, Lord Kelvin led a master class on "Molecular Dynamics and the Wave Theory of Light" at Johns Hopkins University. [94] Kelvin referred to the acoustic wave equation describing sound as waves of pressure in air and attempted to describe also an electromagnetic wave equation, presuming a luminiferous aether susceptible to

  6. History of special relativity - Wikipedia

    en.wikipedia.org/wiki/History_of_special_relativity

    However, as to electromagnetic theory and electrodynamics, during the 19th century the wave theory of light as a disturbance of a "light medium" or luminiferous aether was widely accepted, the theory reaching its most developed form in the work of James Clerk Maxwell. According to Maxwell's theory, all optical and electrical phenomena propagate ...

  7. Aether theories - Wikipedia

    en.wikipedia.org/wiki/Aether_theories

    In the 19th century, luminiferous aether (or ether), meaning light-bearing aether, was a theorized medium for the propagation of light. James Clerk Maxwell developed a model to explain electric and magnetic phenomena using the aether, a model that led to what are now called Maxwell's equations and the understanding that light is an ...

  8. Huygens–Fresnel principle - Wikipedia

    en.wikipedia.org/wiki/Huygens–Fresnel_principle

    The waves produced by this disturbance, in turn, create disturbances in other regions, and so on. The superposition of all the waves results in the observed pattern of wave propagation. Homogeneity of space is fundamental to quantum field theory (QFT) where the wave function of any object

  9. Double-slit experiment - Wikipedia

    en.wikipedia.org/wiki/Double-slit_experiment

    Much of the behaviour of light can be modelled using classical wave theory. The Huygens–Fresnel principle is one such model; it states that each point on a wavefront generates a secondary wavelet, and that the disturbance at any subsequent point can be found by summing the contributions of the individual wavelets at that point.