Search results
Results from the WOW.Com Content Network
SystemDS 2.0.0 is the first major release under the new name. This release contains a major refactoring, a few major features, a large number of improvements and fixes, and some experimental features to better support the end-to-end data science lifecycle.
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
It became well known in the ML competition circles after its use in the winning solution of the Higgs Machine Learning Challenge. Soon after, the Python and R packages were built, and XGBoost now has package implementations for Java, Scala , Julia, Perl , and other languages.
Machine learning control (MLC) is a subfield of machine learning, intelligent control, and control theory which aims to solve optimal control problems with machine learning methods. Key applications are complex nonlinear systems for which linear control theory methods are not applicable.
Rule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. [ 1 ] [ 2 ] [ 3 ] The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that ...
A step-wise schematic illustrating a generic Michigan-style learning classifier system learning cycle performing supervised learning. Keeping in mind that LCS is a paradigm for genetic-based machine learning rather than a specific method, the following outlines key elements of a generic, modern (i.e. post-XCS) LCS algorithm.
AIMA gives detailed information about the working of algorithms in AI. The book's chapters span from classical AI topics like searching algorithms and first-order logic, propositional logic and probabilistic reasoning to advanced topics such as multi-agent systems, constraint satisfaction problems, optimization problems, artificial neural networks, deep learning, reinforcement learning, and ...
Meta-learning [1] [2] is a subfield of machine learning where automatic learning algorithms are applied to metadata about machine learning experiments. As of 2017, the term had not found a standard interpretation, however the main goal is to use such metadata to understand how automatic learning can become flexible in solving learning problems, hence to improve the performance of existing ...