enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Primordial nuclide - Wikipedia

    en.wikipedia.org/wiki/Primordial_nuclide

    Primordial nuclides were present in the interstellar medium from which the solar system was formed, and were formed in, or after, the Big Bang, by nucleosynthesis in stars and supernovae followed by mass ejection, by cosmic ray spallation, and potentially from other processes.

  3. Big Bang nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Big_Bang_nucleosynthesis

    Indeed, none of these primordial isotopes of the elements from beryllium to oxygen have yet been detected, although those of beryllium and boron may be able to be detected in the future. So far, the only stable nuclides known experimentally to have been made during Big Bang nucleosynthesis are protium, deuterium, helium-3, helium-4, and lithium-7.

  4. Nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Nucleosynthesis

    Star formation has been occurring continuously in galaxies since that time. The primordial nuclides were created by Big Bang nucleosynthesis, stellar nucleosynthesis, supernova nucleosynthesis, and by nucleosynthesis in exotic events such as neutron star collisions. Other nuclides, such as 40 Ar, formed later through radioactive decay. On Earth ...

  5. Nuclide - Wikipedia

    en.wikipedia.org/wiki/Nuclide

    They occur in the decay chains of primordial isotopes of uranium or thorium. Some of these nuclides are very short-lived, such as isotopes of francium. There exist about 51 of these daughter nuclides that have half-lives too short to be primordial, and which exist in nature solely due to decay from longer lived radioactive primordial nuclides.

  6. Cosmogenic nuclide - Wikipedia

    en.wikipedia.org/wiki/Cosmogenic_nuclide

    By convention, certain stable nuclides of lithium, beryllium, and boron are thought to have been produced by cosmic ray spallation in the period of time between the Big Bang and the Solar System's formation (thus making these primordial nuclides, by definition) are not termed "cosmogenic", even though they were formed by the same process as the ...

  7. Monoisotopic element - Wikipedia

    en.wikipedia.org/wiki/Monoisotopic_element

    The single monoisotopic exception to the odd Z rule is beryllium; its single stable, primordial isotope, beryllium-9, has 4 protons and 5 neutrons. This element is prevented from having a stable isotope with equal numbers of neutrons and protons ( beryllium-8 , with 4 of each) by its instability toward alpha decay , which is favored due to the ...

  8. Extinct radionuclide - Wikipedia

    en.wikipedia.org/wiki/Extinct_radionuclide

    The Solar System and Earth are formed from primordial nuclides and extinct nuclides. Extinct nuclides have decayed away, but primordial nuclides still exist in their original state (undecayed). There are 251 stable primordial nuclides, and remainders of 35 primordial radionuclides that have very long half-lives.

  9. Radionuclide - Wikipedia

    en.wikipedia.org/wiki/Radionuclide

    They include 30 nuclides with measured half-lives longer than the estimated age of the universe (13.8 billion years [17]), and another four nuclides with half-lives long enough (> 100 million years) that they are radioactive primordial nuclides, and may be detected on Earth, having survived from their presence in interstellar dust since before ...