Search results
Results from the WOW.Com Content Network
In mathematics, the Skolem problem is the problem of determining whether the values of a constant-recursive sequence include the number zero. The problem can be formulated for recurrences over different types of numbers, including integers, rational numbers, and algebraic numbers.
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]
The ordinary generating function of a sequence can be expressed as a rational function (the ratio of two finite-degree polynomials) if and only if the sequence is a linear recursive sequence with constant coefficients; this generalizes the examples above. Conversely, every sequence generated by a fraction of polynomials satisfies a linear ...
In mathematics, the Hofstadter Female and Male sequences are an example of a pair of integer sequences defined in a mutually recursive manner. Fractals can be computed (up to a given resolution) by recursive functions. This can sometimes be done more elegantly via mutually recursive functions; the SierpiĆski curve is a good example.
Primitive recursive arithmetic (PRA) is a quantifier-free formalization of the natural numbers. It was first proposed by Norwegian mathematician Skolem (1923) , [ 1 ] as a formalization of his finitistic conception of the foundations of arithmetic , and it is widely agreed that all reasoning of PRA is finitistic.
The Fibonacci sequence is constant-recursive: each element of the sequence is the sum of the previous two. Hasse diagram of some subclasses of constant-recursive sequences, ordered by inclusion In mathematics , an infinite sequence of numbers s 0 , s 1 , s 2 , s 3 , … {\displaystyle s_{0},s_{1},s_{2},s_{3},\ldots } is called constant ...
The 9-person Symbolab team, based in Tel Aviv, will join Course Hero . The platforms will live under independent branding for the near future, according to Andrew Grauer, CEO of Course Hero.
The sequences which are solutions of these equations are called holonomic, P-recursive or D-finite. From the late 1980s, the first algorithms were developed to find solutions for these equations. Sergei A. Abramov, Marko Petkovšek and Mark van Hoeij described algorithms to find polynomial, rational, hypergeometric and d'Alembertian solutions.