enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gated recurrent unit - Wikipedia

    en.wikipedia.org/wiki/Gated_recurrent_unit

    Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. [1] The GRU is like a long short-term memory (LSTM) with a gating mechanism to input or forget certain features, [2] but lacks a context vector or output gate, resulting in fewer parameters than LSTM. [3]

  3. Gating mechanism - Wikipedia

    en.wikipedia.org/wiki/Gating_mechanism

    The gated recurrent unit (GRU) simplifies the LSTM. [3] Compared to the LSTM, the GRU has just two gates: a reset gate and an update gate. GRU also merges the cell state and hidden state. The reset gate roughly corresponds to the forget gate, and the update gate roughly corresponds to the input gate. The output gate is removed. There are ...

  4. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    An RNN-based model can be factored into two parts: configuration and architecture. Multiple RNN can be combined in a data flow, and the data flow itself is the configuration. Each RNN itself may have any architecture, including LSTM, GRU, etc.

  5. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    The Long Short-Term Memory (LSTM) cell can process data sequentially and keep its hidden state through time. Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs.

  6. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    Similarly, another 130M-parameter model used gated recurrent units (GRU) instead of LSTM. [22] Later research showed that GRUs are neither better nor worse than LSTMs for seq2seq. [24] [25] These early seq2seq models had no attention mechanism, and the state vector is accessible only after the last word of the source text was processed ...

  7. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    Similarly, another 130M-parameter model used gated recurrent units (GRU) instead of LSTM. [20] Later research showed that GRUs are neither better nor worse than LSTMs for seq2seq. [22] [23] These early seq2seq models had no attention mechanism, and the state vector is accessible only after the last word of the source text was processed ...

  8. Bidirectional recurrent neural networks - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_recurrent...

    Bidirectional recurrent neural networks (BRNN) connect two hidden layers of opposite directions to the same output.With this form of generative deep learning, the output layer can get information from past (backwards) and future (forward) states simultaneously.

  9. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]