enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    In theory, classic RNNs can keep track of arbitrary long-term dependencies in the input sequences. The problem with classic RNNs is computational (or practical) in nature: when training a classic RNN using back-propagation, the long-term gradients which are back-propagated can "vanish", meaning they can tend to zero due to very small numbers creeping into the computations, causing the model to ...

  3. ELMo - Wikipedia

    en.wikipedia.org/wiki/ELMo

    Like BERT (but unlike "bag of words" such as Word2Vec and GloVe), ELMo word embeddings are context-sensitive, producing different representations for words that share the same spelling. It was trained on a corpus of about 30 million sentences and 1 billion words. [4] Previously, bidirectional LSTM was used for contextualized word representation ...

  4. Connectionist temporal classification - Wikipedia

    en.wikipedia.org/wiki/Connectionist_temporal...

    Connectionist temporal classification (CTC) is a type of neural network output and associated scoring function, for training recurrent neural networks (RNNs) such as LSTM networks to tackle sequence problems where the timing is variable.

  5. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    [2] [7] Additionally, Mamba simplifies its architecture by integrating the SSM design with MLP blocks, resulting in a homogeneous and streamlined structure, furthering the model's capability for general sequence modeling across data types that include language, audio, and genomics, while maintaining efficiency in both training and inference. [2]

  6. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  7. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    In words, it is a neural network that maps an input into an output , with the hidden vector playing the role of "memory", a partial record of all previous input-output pairs. At each step, it transforms input to an output, and modifies its "memory" to help it to better perform future processing.

  8. Gated recurrent unit - Wikipedia

    en.wikipedia.org/wiki/Gated_recurrent_unit

    Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. [1] The GRU is like a long short-term memory (LSTM) with a gating mechanism to input or forget certain features, [2] but lacks a context vector or output gate, resulting in fewer parameters than LSTM. [3]

  9. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    He and Schmidhuber later designed the LSTM architecture to solve this problem, [4] [21] which has a "cell state" that can function as a generalized residual connection. The highway network (2015) [22] [23] applied the idea of an LSTM unfolded in time to feedforward neural networks, resulting in the highway network. ResNet is equivalent to an ...