Search results
Results from the WOW.Com Content Network
A single-displacement reaction, also known as single replacement reaction or exchange reaction, is an archaic concept in chemistry. It describes the stoichiometry of some chemical reactions in which one element or ligand is replaced by atom or group. [1] [2] [3] It can be represented generically as:
Group 1: Alkali metals Reaction of sodium (Na) and water Reaction of potassium (K) in water. The alkali metals (Li, Na, K, Rb, Cs, and Fr) are the most reactive metals in the periodic table - they all react vigorously or even explosively with cold water, resulting in the displacement of hydrogen.
The most reactive metals, such as sodium, will react with cold water to produce hydrogen and the metal hydroxide: 2 Na (s) + 2 H 2 O (l) →2 NaOH (aq) + H 2 (g) Metals in the middle of the reactivity series, such as iron , will react with acids such as sulfuric acid (but not water at normal temperatures) to give hydrogen and a metal salt ...
The two reactions are named according tho their rate law, with S N 1 having a first-order rate law, and S N 2 having a second-order. [2] S N 1 reaction mechanism occurring through two steps. The S N 1 mechanism has two steps. In the first step, the leaving group departs, forming a carbocation (C +). In the second step, the nucleophilic reagent ...
The halogens can all react with metals to form metal halides according to the following equation: 2M + nX 2 → 2MX n. where M is the metal, X is the halogen, and MX n is the metal halide. Sample of silver chloride. In practice, this type of reaction may be very exothermic, hence impractical as a preparative technique.
Aquation is the chemical reaction involving "incorporation of one or more integral molecules of water" with or without displacement of other atoms or groups. [1] The term is typically employed to refer to reactions of metal complexes where an anion is displaced by water.
Recently Metal-Organic Framework (MOF)-based materials have been shown to be a highly promising candidate for water oxidation with first row transition metals.; [11] [12] Preparation of the surface and electrolysis conditions have a large effect on reactivity (defects, steps, kinks, low coordinate sites) therefore it is difficult to predict an ...
Astatine is known to react with its lighter homologs iodine, bromine, and chlorine in the vapor state; these reactions produce diatomic interhalogen compounds with formulas AtI, AtBr, and AtCl. [4] The first two compounds may also be produced in water – astatine reacts with iodine/ iodide solution to form AtI, whereas AtBr requires (aside ...