enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sum coloring - Wikipedia

    en.wikipedia.org/wiki/Sum_coloring

    The sum of the labels is 11, smaller than could be achieved using only two labels. In graph theory, a sum coloring of a graph is a labeling of its vertices by positive integers, with no two adjacent vertices having equal labels, that minimizes the sum of the labels. The minimum sum that can be achieved is called the chromatic sum of the graph. [1]

  3. Graph coloring - Wikipedia

    en.wikipedia.org/wiki/Graph_coloring

    For the example graph, P(G, t) = t(t − 1) 2 (t − 2), and indeed P(G, 4) = 72. The chromatic polynomial includes more information about the colorability of G than does the chromatic number. Indeed, χ is the smallest positive integer that is not a zero of the chromatic polynomial χ(G) = min{k : P(G, k) > 0}.

  4. List coloring - Wikipedia

    en.wikipedia.org/wiki/List_coloring

    For a graph G, let χ(G) denote the chromatic number and Δ(G) the maximum degree of G.The list coloring number ch(G) satisfies the following properties.. ch(G) ≥ χ(G).A k-list-colorable graph must in particular have a list coloring when every vertex is assigned the same list of k colors, which corresponds to a usual k-coloring.

  5. Greedy coloring - Wikipedia

    en.wikipedia.org/wiki/Greedy_coloring

    In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring [1] is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but ...

  6. Bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Bipartite_graph

    Factor graphs and Tanner graphs are examples of this. A Tanner graph is a bipartite graph in which the vertices on one side of the bipartition represent digits of a codeword, and the vertices on the other side represent combinations of digits that are expected to sum to zero in a codeword without errors. [40]

  7. Equitable coloring - Wikipedia

    en.wikipedia.org/wiki/Equitable_coloring

    The equitable chromatic number of a graph G is the smallest number k such that G has an equitable coloring with k colors. But G might not have equitable colorings for some larger numbers of colors; the equitable chromatic threshold of G is the smallest k such that G has equitable colorings for any number of colors greater than or equal to k. [2]

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Chromatic polynomial - Wikipedia

    en.wikipedia.org/wiki/Chromatic_polynomial

    This would have established the four color theorem. No graph can be 0-colored, so 0 is always a chromatic root. Only edgeless graphs can be 1-colored, so 1 is a chromatic root of every graph with at least one edge. On the other hand, except for these two points, no graph can have a chromatic root at a real number smaller than or equal to 32/27. [8]