Search results
Results from the WOW.Com Content Network
The matching pursuit is an example of a greedy algorithm applied on signal approximation. A greedy algorithm finds the optimal solution to Malfatti's problem of finding three disjoint circles within a given triangle that maximize the total area of the circles; it is conjectured that the same greedy algorithm is optimal for any number of circles.
But in complex situations it can easily fail to find the optimal scheduling. HEFT is essentially a greedy algorithm and incapable of making short-term sacrifices for long term benefits. Some improved algorithms based on HEFT look ahead to better estimate the quality of a scheduling decision can be used to trade run-time for scheduling performance.
This result guarantees the optimality of many well-known algorithms. For example, a minimum spanning tree of a weighted graph may be obtained using Kruskal's algorithm, which is a greedy algorithm for the cycle matroid. Prim's algorithm can be explained by taking the line search greedoid instead.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The notion of matroid has been generalized to allow for other types of sets on which a greedy algorithm gives optimal solutions; see greedoid and matroid embedding for more information. Korte and Lovász would generalize these ideas to objects called greedoids , which allow even larger classes of problems to be solved by greedy algorithms.
Longest-processing-time-first (LPT) is a greedy algorithm for job scheduling. The input to the algorithm is a set of jobs, each of which has a specific processing-time. There is also a number m specifying the number of machines that can process the jobs. The LPT algorithm works as follows:
Typically, a greedy algorithm is used to solve a problem with optimal substructure if it can be proven by induction that this is optimal at each step. [1] Otherwise, provided the problem exhibits overlapping subproblems as well, divide-and-conquer methods or dynamic programming may be used.
The following greedy algorithm finds a solution that contains at least 1/2 of the optimal number of intervals: [8] Select the interval, x, with the earliest finishing time. Remove x, and all intervals intersecting x, and all intervals in the same group of x, from the set of candidate intervals. Continue until the set of candidate intervals is ...