Search results
Results from the WOW.Com Content Network
Solving these two quintics yields r = 1.501 × 10 9 m for L 2 and r = 1.491 × 10 9 m for L 1. The Sun–Earth Lagrangian points L 2 and L 1 are usually given as 1.5 million km from Earth. If the mass of the smaller object ( M E ) is much smaller than the mass of the larger object ( M S ), then the quintic equation can be greatly reduced and L ...
Abel–Ruffini theorem refers also to the slightly stronger result that there are equations of degree five and higher that cannot be solved by radicals. This does not follow from Abel's statement of the theorem, but is a corollary of his proof, as his proof is based on the fact that some polynomials in the coefficients of the equation are not ...
Fuchs's theorem (differential equations) Fuglede's theorem (functional analysis) Full employment theorem (theoretical computer science) Fulton–Hansen connectedness theorem (algebraic geometry) Fundamental theorem of algebra (complex analysis) Fundamental theorem of arbitrage-free pricing (financial mathematics)
The following names are assigned to polynomials according to their degree: [2] [3] [4] Special case – zero (see § Degree of the zero polynomial, below) Degree 0 – non-zero constant [5] Degree 1 – linear; Degree 2 – quadratic; Degree 3 – cubic; Degree 4 – quartic (or, if all terms have even degree, biquadratic) Degree 5 – quintic
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Metamath is a formal language and an associated computer program (a proof assistant) for archiving and verifying mathematical proofs. [2] Several databases of proved theorems have been developed using Metamath covering standard results in logic, set theory, number theory, algebra, topology and analysis, among others.
The fundamental theorem of algebra states that every polynomial of positive degree has at least one complex root. The above process shows the fundamental theorem of algebra implies that every polynomial p(x) = a n x n + a n−1 x n−1 + ⋯ + a 1 x + a 0 can be factored as = (),
As the integrand is the third-degree polynomial y(x) = 7x 3 – 8x 2 – 3x + 3, the 2-point Gaussian quadrature rule even returns an exact result. In numerical analysis , an n -point Gaussian quadrature rule , named after Carl Friedrich Gauss , [ 1 ] is a quadrature rule constructed to yield an exact result for polynomials of degree 2 n − 1 ...