enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    The locus of points equidistant from two given points is a straight line that is called the perpendicular bisector of the line segment connecting the points. The perpendicular bisectors of any two sides of a triangle intersect in exactly one point. This point must be equidistant from the vertices of the triangle.

  3. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    Line DE bisects line AB at D, line EF is a perpendicular bisector of segment AD at C, and line EF is the interior bisector of right angle AED. In geometry, bisection is the division of something into two equal or congruent parts (having the same shape and size). Usually it involves a bisecting line, also called a bisector.

  4. Distance from a point to a line - Wikipedia

    en.wikipedia.org/.../Distance_from_a_point_to_a_line

    The line with equation ax + by + c = 0 has slope -a/b, so any line perpendicular to it will have slope b/a (the negative reciprocal). Let (m, n) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point (x 0, y 0). The line through these two points is perpendicular to the original ...

  5. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Constructing the perpendicular bisector from a segment; Finding the midpoint of a segment. Drawing a perpendicular line from a point to a line. Bisecting an angle; Mirroring a point in a line; Constructing a line through a point tangent to a circle; Constructing a circle through 3 noncollinear points; Drawing a line through a given point ...

  6. Perpendicular - Wikipedia

    en.wikipedia.org/wiki/Perpendicular

    To make the perpendicular to the line AB through the point P using compass-and-straightedge construction, proceed as follows (see figure left): Step 1 (red): construct a circle with center at P to create points A' and B' on the line AB, which are equidistant from P. Step 2 (green): construct circles centered at A' and B' having equal radius.

  7. Special cases of Apollonius' problem - Wikipedia

    en.wikipedia.org/wiki/Special_cases_of_Apollonius...

    A circle is tangent to a point if it passes through the point, and tangent to a line if they intersect at a single point P or if the line is perpendicular to a radius drawn from the circle's center to P. Circles tangent to two given points must lie on the perpendicular bisector. Circles tangent to two given lines must lie on the angle bisector.

  8. Equidistant - Wikipedia

    en.wikipedia.org/wiki/Equidistant

    Perpendicular bisector of a line segment. The point where the red line crosses the black line segment is equidistant from the two end points of the black line segment. The cyclic polygon P is circumscribed by the circle C. The circumcentre O is equidistant to each point on the circle, and a fortiori to each vertex of the polygon.

  9. Angle bisector theorem - Wikipedia

    en.wikipedia.org/wiki/Angle_bisector_theorem

    Consider a triangle ABC.Let the angle bisector of angle ∠ A intersect side BC at a point D between B and C.The angle bisector theorem states that the ratio of the length of the line segment BD to the length of segment CD is equal to the ratio of the length of side AB to the length of side AC:

  1. Related searches perpendicular bisector of line ab and 3 points given the slope and y equation

    bisector perpendicularbisectors at opposite angle
    perpendicular bisector wikipedia