Search results
Results from the WOW.Com Content Network
For example, a triangular distribution might be used, depending on the application. In three-point estimation, three figures are produced initially for every distribution that is required, based on prior experience or best-guesses: a = the best-case estimate; m = the most likely estimate; b = the worst-case estimate
In (3), the axes are rotated to give an isometric view. The triangle, viewed face-on, appears equilateral. In (4), the distances of P from lines BC, AC and AB are denoted by a′, b′ and c′, respectively. For any line l = s + t n̂ in vector form (n̂ is a unit vector) and a point p, the perpendicular distance from p to l is
For the first iteration the two piece and one piece estimates are used in the formula 4 × (more accurate) − (less accurate) / 3 . The same formula is then used to compare the four piece and the two piece estimate, and likewise for the higher estimates; For the second iteration the values of the first iteration are used in the formula ...
This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]
The basis of the method is to have, or to find, a set of simultaneous equations involving both the sample data and the unknown model parameters which are to be solved in order to define the estimates of the parameters. [1] Various components of the equations are defined in terms of the set of observed data on which the estimates are to be based.
The Putnam model is an empirical software effort estimation model [1] created by Lawrence H. Putnam in 1978. Measurements of a software project is collected (e.g., effort in man-years, elapsed time, and lines of code) and an equation fitted to the data using regression analysis.
The Weber problem consists, in the triangle case, in locating a point D with respect to three points A, B, C in such a way that the sum of the transportation costs between D and each of the three other points is minimized. The Weber problem is a generalization of the Fermat problem since it involves both equal and unequal attractive forces (see ...
To triangulate an implicit surface (defined by one or more equations) is more difficult. There exist essentially two methods. There exist essentially two methods. One method divides the 3D region of consideration into cubes and determines the intersections of the surface with the edges of the cubes in order to get polygons on the surface, which ...