enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Planar graph - Wikipedia

    en.wikipedia.org/wiki/Planar_graph

    A 1-planar graph is a graph that may be drawn in the plane with at most one simple crossing per edge, and a k-planar graph is a graph that may be drawn with at most k simple crossings per edge. A map graph is a graph formed from a set of finitely many simply-connected interior-disjoint regions in the plane by connecting two regions when they ...

  3. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  4. Parallel coordinates - Wikipedia

    en.wikipedia.org/wiki/Parallel_coordinates

    The concept of Parallel Coordinates is often said to originate in 1885 by a French mathematician Philbert Maurice d'Ocagne. [1] d'Ocagne sought a way to provide graphical calculation of mathematical functions using alignment diagrams called nomograms which used parallel axes with different scales.

  5. Fáry's theorem - Wikipedia

    en.wikipedia.org/wiki/Fáry's_theorem

    Tutte's spring theorem states that every 3-connected planar graph can be drawn on a plane without crossings so that its edges are straight line segments and an outside face is a convex polygon (Tutte 1963). It is so called because such an embedding can be found as the equilibrium position for a system of springs representing the edges of the graph.

  6. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    Graph drawing also can be said to encompass problems that deal with the crossing number and its various generalizations. The crossing number of a graph is the minimum number of intersections between edges that a drawing of the graph in the plane must contain. For a planar graph, the crossing number is zero by definition. Drawings on surfaces ...

  7. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. [9] Such a drawing is called a plane graph or planar embedding of the graph.

  8. Genus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Genus_(mathematics)

    Thus, a planar graph has genus 0, because it can be drawn on a sphere without self-crossing. The non-orientable genus of a graph is the minimal integer n such that the graph can be drawn without crossing itself on a sphere with n cross-caps (i.e. a non-orientable surface of (non-orientable) genus n). (This number is also called the demigenus.)

  9. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).