enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Planar graph - Wikipedia

    en.wikipedia.org/wiki/Planar_graph

    A 1-planar graph is a graph that may be drawn in the plane with at most one simple crossing per edge, and a k-planar graph is a graph that may be drawn with at most k simple crossings per edge. A map graph is a graph formed from a set of finitely many simply-connected interior-disjoint regions in the plane by connecting two regions when they ...

  3. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  4. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    The image of a figure by a reflection is its mirror image in the axis or plane of reflection. For example the mirror image of the small Latin letter p for a reflection with respect to a vertical axis (a vertical reflection) would look like q. Its image by reflection in a horizontal axis (a horizontal reflection) would look like b.

  5. Fáry's theorem - Wikipedia

    en.wikipedia.org/wiki/Fáry's_theorem

    Tutte's spring theorem states that every 3-connected planar graph can be drawn on a plane without crossings so that its edges are straight line segments and an outside face is a convex polygon (Tutte 1963). It is so called because such an embedding can be found as the equilibrium position for a system of springs representing the edges of the graph.

  6. Genus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Genus_(mathematics)

    Thus, a planar graph has genus 0, because it can be drawn on a sphere without self-crossing. The non-orientable genus of a graph is the minimal integer n such that the graph can be drawn without crossing itself on a sphere with n cross-caps (i.e. a non-orientable surface of (non-orientable) genus n). (This number is also called the demigenus.)

  7. Topological graph theory - Wikipedia

    en.wikipedia.org/wiki/Topological_graph_theory

    In mathematics, topological graph theory is a branch of graph theory. It studies the embedding of graphs in surfaces, spatial embeddings of graphs, and graphs as topological spaces. [1] It also studies immersions of graphs. Embedding a graph in a surface means that we want to draw the graph on a surface, a sphere for example, without two edges ...

  8. Convex curve - Wikipedia

    en.wikipedia.org/wiki/Convex_curve

    A plane curve is called convex if it has a supporting line through each of its points. [8] [9] For example, the graph of a convex function has a supporting line below the graph through each of its points. More strongly, at the points where the function has a derivative, there is exactly one supporting line, the tangent line. [10]

  9. Toroidal graph - Wikipedia

    en.wikipedia.org/wiki/Toroidal_graph

    A cubic graph with 14 vertices embedded on a torus The Heawood graph and associated map embedded in the torus. In the mathematical field of graph theory, a toroidal graph is a graph that can be embedded on a torus. In other words, the graph's vertices and edges can be placed on a torus such that no edges intersect except at a vertex that ...