Search results
Results from the WOW.Com Content Network
In computer science, locality of reference, also known as the principle of locality, [1] is the tendency of a processor to access the same set of memory locations repetitively over a short period of time. [2] There are two basic types of reference locality – temporal and spatial locality.
In computing, a memory access pattern or IO access pattern is the pattern with which a system or program reads and writes memory on secondary storage.These patterns differ in the level of locality of reference and drastically affect cache performance, [1] and also have implications for the approach to parallelism [2] [3] and distribution of workload in shared memory systems. [4]
LIRS (Low Inter-reference Recency Set) is a page replacement algorithm with an improved performance over LRU (Least Recently Used) and many other newer replacement algorithms. [1] This is achieved by using "reuse distance" [ 2 ] as the locality metric for dynamically ranking accessed pages to make a replacement decision.
Most modern CPUs are so fast that for most program workloads, the bottleneck is the locality of reference of memory accesses and the efficiency of the caching and memory transfer between different levels of the hierarchy [citation needed]. As a result, the CPU spends much of its time idling, waiting for memory I/O to complete.
Rarely, but especially in algorithms, coherence can instead refer to the locality of reference. Multiple copies of the same data can exist in different cache simultaneously and if processors are allowed to update their own copies freely, an inconsistent view of memory can result.
Caching is an effective manner of improving performance in situations where the principle of locality of reference applies. The methods used to determine which data is stored in progressively faster storage are collectively called caching strategies. Examples are ASP.NET cache, CPU cache, etc.
Cache placement policies are policies that determine where a particular memory block can be placed when it goes into a CPU cache.A block of memory cannot necessarily be placed at an arbitrary location in the cache; it may be restricted to a particular cache line or a set of cache lines [1] by the cache's placement policy.
This is primarily due to CPU caching which exploits spatial locality of reference. [1] In addition, contiguous access makes it possible to use SIMD instructions that operate on vectors of data. In some media such as magnetic-tape data storage , accessing sequentially is orders of magnitude faster than nonsequential access.