enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second-order cone programming - Wikipedia

    en.wikipedia.org/wiki/Second-order_cone_programming

    The coneprog function solves SOCP problems [12] using an interior-point algorithm [13] MOSEK: commercial: parallel interior-point algorithm NAG Numerical Library: commercial: General purpose numerical library with SOCP solver SCS: open source SCS (Splitting Conic Solver) is a numerical optimization package for solving large-scale convex ...

  3. Conic optimization - Wikipedia

    en.wikipedia.org/wiki/Conic_optimization

    Conic optimization is a subfield of convex optimization that studies problems consisting of minimizing a convex function over the intersection of an affine subspace and a convex cone. The class of conic optimization problems includes some of the most well known classes of convex optimization problems, namely linear and semidefinite programming .

  4. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    In the Cartesian coordinate system, the graph of a quadratic equation in two variables is always a conic section – though it may be degenerate, and all conic sections arise in this way. The equation will be of the form A x 2 + B x y + C y 2 + D x + E y + F = 0 with A , B , C not all zero. {\displaystyle Ax^{2}+Bxy+Cy^{2}+Dx+Ey+F=0{\text{ with ...

  5. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.

  6. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Folds satisfying the Huzita–Hatori axioms can construct exactly the same set of points as the extended constructions using a compass and conic drawing tool. Therefore, origami can also be used to solve cubic equations (and hence quartic equations), and thus solve two of the classical problems. [19]

  7. Algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Algebraic_geometry

    Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems.Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.

  8. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis , vertices , tangents and the pole and polar relationship between points and lines of the plane determined by the conic.

  9. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1.