Search results
Results from the WOW.Com Content Network
The capstan equation [1] or belt friction equation, also known as Euler–Eytelwein formula [2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line is wound around a cylinder (a bollard, a winch or a capstan).
Frictional contact mechanics emphasizes the effect of friction forces. Contact mechanics is part of mechanical engineering. The physical and mathematical formulation of the subject is built upon the mechanics of materials and continuum mechanics and focuses on computations involving elastic, viscoelastic, and plastic bodies in static or dynamic ...
The two regimes of dry friction are 'static friction' ("stiction") between non-moving surfaces, and kinetic friction (sometimes called sliding friction or dynamic friction) between moving surfaces. Coulomb friction, named after Charles-Augustin de Coulomb , is an approximate model used to calculate the force of dry friction.
The equation used to model belt friction is, assuming the belt has no mass and its material is a fixed composition: [2] = where is the tension of the pulling side, is the tension of the resisting side, is the static friction coefficient, which has no units, and is the angle, in radians, formed by the first and last spots the belt touches the pulley, with the vertex at the center of the pulley.
This does cause frictional shear stresses in the contact area. In the final situation the bollard exercises a friction force on the rope such that a static situation occurs. The tension distribution in the rope in this final situation is described by the capstan equation, with solution:
The static, advancing, or receding contact angle can be used in place of the equilibrium contact angle depending on the application. The overall effect can be seen as closely analogous to static friction, i.e., a minimal amount of work per unit distance is required to move the contact line. [6]
Friction loss (or head loss) represents energy lost to friction as fluid flows through the pipe. This equation can be derived from Bernoulli's Equation. For incompressible liquids such as water, Static lift + Pressure head together equal the difference in fluid surface elevation between the suction basin and the discharge basin.
Traction can also refer to the maximum tractive force between a body and a surface, as limited by available friction; when this is the case, traction is often expressed as the ratio of the maximum tractive force to the normal force and is termed the coefficient of traction (similar to coefficient of friction).