enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tree rotation - Wikipedia

    en.wikipedia.org/wiki/Tree_rotation

    Notice that the right child of a left child of the root of a sub-tree (for example node B in the diagram for the tree rooted at Q) can become the left child of the root, that itself becomes the right child of the "new" root in the rotated sub-tree, without violating either of those constraints. As seen in the diagram, the order of the leaves ...

  3. Left rotation - Wikipedia

    en.wikipedia.org/wiki/Left_rotation

    AVL trees and red–black trees are two examples of binary search trees that use the left rotation. A single left rotation is done in O(1) time but is often integrated within the node insertion and deletion of binary search trees. The rotations are done to keep the cost of other methods and tree height at a minimum.

  4. AVL tree - Wikipedia

    en.wikipedia.org/wiki/AVL_tree

    Both AVL trees and red–black (RB) trees are self-balancing binary search trees and they are related mathematically. Indeed, every AVL tree can be colored red–black, [14] but there are RB trees which are not AVL balanced. For maintaining the AVL (or RB) tree's invariants, rotations play an important role.

  5. Right rotation - Wikipedia

    en.wikipedia.org/wiki/Right_rotation

    AVL trees and red–black trees are two examples of binary search trees that use a right rotation. A single right rotation is done in O(1) time but is often integrated within the node insertion and deletion of binary search trees. The rotations are done to keep the cost of other methods and tree height at a minimum.

  6. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    For example, if binary tree sort is implemented with a self-balancing BST, we have a very simple-to-describe yet asymptotically optimal (⁡) sorting algorithm. Similarly, many algorithms in computational geometry exploit variations on self-balancing BSTs to solve problems such as the line segment intersection problem and the point location ...

  7. Join-based tree algorithms - Wikipedia

    en.wikipedia.org/wiki/Join-based_tree_algorithms

    In 2016, Blelloch et al. formally proposed the join-based algorithms, and formalized the join algorithm for four different balancing schemes: AVL trees, red–black trees, weight-balanced trees and treaps. In the same work they proved that Adams' algorithms on union, intersection and difference are work-optimal on all the four balancing schemes.

  8. Threaded binary tree - Wikipedia

    en.wikipedia.org/wiki/Threaded_binary_tree

    One problem with this algorithm is that, because of its recursion, it uses stack space proportional to the height of a tree. If the tree is fairly balanced, this amounts to O(log n) space for a tree containing n elements. In the worst case, when the tree takes the form of a chain, the height of the tree is n so the algorithm takes O(n) space. A ...

  9. Interval tree - Wikipedia

    en.wikipedia.org/wiki/Interval_tree

    An augmented tree can be built from a simple ordered tree, for example a binary search tree or self-balancing binary search tree, ordered by the 'low' values of the intervals. An extra annotation is then added to every node, recording the maximum upper value among all the intervals from this node down.