Search results
Results from the WOW.Com Content Network
In surveying, bearings can be referenced to true north, magnetic north, grid north (the Y axis of a map projection), or a previous map, which is often a historical magnetic north. [citation needed] If navigating by gyrocompass, the reference direction is true north, in which case the terms true bearing and geodetic bearing are used.
With a local declination of 14°E, a true bearing (i.e. obtained from a map) of 54° is converted to a magnetic bearing (for use in the field) by subtracting declination: 54° – 14° = 40°. If the local declination was 14°W (−14°), it is again subtracted from the true bearing to obtain a magnetic bearing: 54°- (−14°) = 68°.
For example, a bearing might be described as "(from) south, (turn) thirty degrees (toward the) east" (the words in brackets are usually omitted), abbreviated "S30°E", which is the bearing 30 degrees in the eastward direction from south, i.e. the bearing 150 degrees clockwise from north.
A magnetic bearing. A magnetic bearing is a type of bearing that supports a load using magnetic levitation. Magnetic bearings support moving parts without physical contact. For instance, they are able to levitate a rotating shaft and permit relative motion with very low friction and no mechanical wear. Magnetic bearings support the highest ...
True course is 120°, the Variation is 5° West, and the Deviation is 1° West. T: 120° V: +5° M: 125° D: +1° C: 126° Therefore, to achieve a true course of 120°, one should follow a compass heading of 126°. True course is 120°, the Variation is 5° East and the Deviation is 1° East. T: 120° V: −5° M: 115° D: −1° C: 114°
True distance = rhumb distance ≅ ruler distance × cos φ / RF. (short lines) (short lines) With radius and great circle circumference equal to 6,371 km and 40,030 km respectively an RF of 1 / 300M , for which R = 2.12 cm and W = 13.34 cm, implies that a ruler measurement of 3 mm. in any direction from a point on the equator ...
In navigation, a rhumb line, rhumb (/ r ʌ m /), or loxodrome is an arc crossing all meridians of longitude at the same angle, that is, a path with constant azimuth (bearing as measured relative to true north). Navigation on a fixed course (i.e., steering the vessel to follow a constant cardinal direction) would result in a rhumb-line track.
A missile (blue) intercepts a target (red) by maintaining constant bearing to it (green) Proportional navigation (also known as PN or Pro-Nav) is a guidance law (analogous to proportional control) used in some form or another by most homing air target missiles. [1]