Search results
Results from the WOW.Com Content Network
These names reflect a basic concept in number theory, the 2-order of an integer: how many times the integer can be divided by 2. Specifically, the 2-order of a nonzero integer n is the maximum integer value k such that n/2 k is an integer. This is equivalent to the multiplicity of 2 in the prime factorization.
An orange that has been sliced into two halves. In mathematics, division by two or halving has also been called mediation or dimidiation. [1] The treatment of this as a different operation from multiplication and division by other numbers goes back to the ancient Egyptians, whose multiplication algorithm used division by two as one of its fundamental steps. [2]
Dividing 272 and 8, starting with the hundreds digit, 2 is not divisible by 8. Add 20 and 7 to get 27. The largest number that the divisor of 8 can be multiplied by without exceeding 27 is 3, so it is written under the tens column. Subtracting 24 (the product of 3 and 8) from 27 gives 3 as the remainder.
For example, 26 cannot be divided by 11 to give an integer. Such a case uses one of five approaches: Say that 26 cannot be divided by 11; division becomes a partial function. Give an approximate answer as a floating-point number. This is the approach usually taken in numerical computation.
The grid method (also known as the box method) of multiplication is an introductory approach to multi-digit multiplication calculations that involve numbers larger than ten. Because it is often taught in mathematics education at the level of primary school or elementary school , this algorithm is sometimes called the grammar school method.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5. As you would start on the number you are multiplying, when you multiply by 0, you stay on 0 (0 is external and so the arrows have no effect on 0, otherwise 0 is used as a link to create a perpetual cycle).
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts