enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Haber process - Wikipedia

    en.wikipedia.org/wiki/Haber_process

    The Haber process relies on catalysts that accelerate the scission of these bonds. Two opposing considerations are relevant: the equilibrium position and the reaction rate . At room temperature, the equilibrium is in favor of ammonia, but the reaction does not proceed at a detectable rate due to its high activation energy.

  3. Abiological nitrogen fixation using homogeneous catalysts

    en.wikipedia.org/wiki/Abiological_nitrogen...

    Abiological nitrogen fixation describes chemical processes that fix (react with) N 2, usually with the goal of generating ammonia. The dominant technology for abiological nitrogen fixation is the Haber process, which uses iron-based heterogeneous catalysts and H 2 to convert N 2 to NH 3. This article focuses on homogeneous (soluble) catalysts ...

  4. Heterogeneous catalysis - Wikipedia

    en.wikipedia.org/wiki/Heterogeneous_catalysis

    The production of 90% of chemicals (by volume) is assisted by solid catalysts. [2] The chemical and energy industries rely heavily on heterogeneous catalysis. For example, the Haber–Bosch process uses metal-based catalysts in the synthesis of ammonia, an important component in fertilizer; 144 million tons of ammonia were produced in 2016. [5]

  5. Born–Haber cycle - Wikipedia

    en.wikipedia.org/wiki/Born–Haber_cycle

    The Born–Haber cycle is an approach to analyze reaction energies. It was named after two German scientists, Max Born and Fritz Haber , who developed it in 1919. [ 1 ] [ 2 ] [ 3 ] It was also independently formulated by Kasimir Fajans [ 4 ] and published concurrently in the same journal. [ 1 ]

  6. Le Chatelier's principle - Wikipedia

    en.wikipedia.org/wiki/Le_Chatelier's_principle

    A catalyst increases the rate of a reaction without being consumed in the reaction. The use of a catalyst does not affect the position and composition of the equilibrium of a reaction, because both the forward and backward reactions are sped up by the same factor. For example, consider the Haber process for the synthesis of ammonia (NH 3):

  7. Catalysis - Wikipedia

    en.wikipedia.org/wiki/Catalysis

    An illustrative example is the effect of catalysts to speed the decomposition of hydrogen peroxide into water and oxygen: . 2 H 2 O 2 → 2 H 2 O + O 2. This reaction proceeds because the reaction products are more stable than the starting compound, but this decomposition is so slow that hydrogen peroxide solutions are commercially available.

  8. Catalytic cycle - Wikipedia

    en.wikipedia.org/wiki/Catalytic_cycle

    Usually the true catalyst is an expensive and complex molecule and added in quantities as small as possible. The stoichiometric catalyst on the other hand should be cheap and abundant. [citation needed] "Sacrificial catalysts" are more accurately referred to by their actual role in the catalytic cycle, for example as a reductant.

  9. Reaction coordinate - Wikipedia

    en.wikipedia.org/wiki/Reaction_coordinate

    For example, in the homolytic dissociation of molecular hydrogen, an apt choice would be the coordinate corresponding to the bond length. Non-geometric parameters such as bond order are also used, but such direct representation of the reaction process can be difficult, especially for more complex reactions.