enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    First, regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field of machine learning. Second, in some situations regression analysis can be used to infer causal relationships between the independent and dependent variables. Importantly, regressions by themselves only reveal ...

  3. Moderation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Moderation_(statistics)

    Moderation analysis in the behavioral sciences involves the use of linear multiple regression analysis or causal modelling. [1] To quantify the effect of a moderating variable in multiple regression analyses, regressing random variable Y on X , an additional term is added to the model.

  4. General linear model - Wikipedia

    en.wikipedia.org/wiki/General_linear_model

    The general linear model or general multivariate regression model is a compact way of simultaneously writing several multiple linear regression models. In that sense it is not a separate statistical linear model. The various multiple linear regression models may be compactly written as [1]

  5. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple linear regression. [1] This term is distinct from multivariate linear regression, which predicts multiple correlated dependent variables rather than a single dependent variable. [2]

  6. Multivariate statistics - Wikipedia

    en.wikipedia.org/wiki/Multivariate_statistics

    Certain types of problems involving multivariate data, for example simple linear regression and multiple regression, are not usually considered to be special cases of multivariate statistics because the analysis is dealt with by considering the (univariate) conditional distribution of a single outcome variable given the other variables.

  7. Multilevel model - Wikipedia

    en.wikipedia.org/wiki/Multilevel_model

    Multilevel models are a subclass of hierarchical Bayesian models, which are general models with multiple levels of random variables and arbitrary relationships among the different variables. Multilevel analysis has been extended to include multilevel structural equation modeling, multilevel latent class modeling, and other more general models.

  8. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    When using multinomial logistic regression, one category of the dependent variable is chosen as the reference category. Separate odds ratios are determined for all independent variables for each category of the dependent variable with the exception of the reference category, which is omitted from the analysis.

  9. Stepwise regression - Wikipedia

    en.wikipedia.org/wiki/Stepwise_regression

    The main approaches for stepwise regression are: Forward selection, which involves starting with no variables in the model, testing the addition of each variable using a chosen model fit criterion, adding the variable (if any) whose inclusion gives the most statistically significant improvement of the fit, and repeating this process until none improves the model to a statistically significant ...