Search results
Results from the WOW.Com Content Network
In computer science and information theory, a Huffman code is a particular type of optimal prefix code that is commonly used for lossless data compression.The process of finding or using such a code is Huffman coding, an algorithm developed by David A. Huffman while he was a Sc.D. student at MIT, and published in the 1952 paper "A Method for the Construction of Minimum-Redundancy Codes".
To avoid having excess code length over the entropy, one can use alphabet extension which codes blocks of symbols instead of coding individual symbols. This spreads out the excess coding length over many symbols. This is the “run” mode of JPEG-LS and it is executed once a flat or smooth context region characterized by zero gradients is ...
Image compression is a type of data compression applied to digital images, to reduce their cost for storage or transmission. Algorithms may take advantage of visual perception and the statistical properties of image data to provide superior results compared with generic data compression methods which are used for other digital data.
Modified Huffman coding is used in fax machines to encode black-on-white images . It combines the variable-length codes of Huffman coding with the coding of repetitive data in run-length encoding . The basic Huffman coding provides a way to compress files with much repeating data, like a file containing text, where the alphabet letters are the ...
Huffman coding is a more sophisticated technique for constructing variable-length prefix codes. The Huffman coding algorithm takes as input the frequencies that the code words should have, and constructs a prefix code that minimizes the weighted average of the code word lengths. (This is closely related to minimizing the entropy.)
Then as the search pointer proceeds past the search window and forward, as far as the run pattern repeats in the input, the search and input pointers will be in sync and match characters until the run pattern is interrupted. Then L characters have been matched in total, L > D, and the code is [D, L, c]. Upon decoding [D, L, c], again, D = L R.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
To make the code a canonical Huffman code, the codes are renumbered. The bit lengths stay the same with the code book being sorted first by codeword length and secondly by alphabetical value of the letter: B = 0 A = 11 C = 101 D = 100 Each of the existing codes are replaced with a new one of the same length, using the following algorithm: