Search results
Results from the WOW.Com Content Network
Key exchange (also key establishment) is a method in cryptography by which cryptographic keys are exchanged between two parties, allowing use of a cryptographic algorithm. In the Diffie–Hellman key exchange scheme, each party generates a public/private key pair and distributes the public key.
Diffie–Hellman (DH) key exchange [nb 1] is a mathematical method of securely generating a symmetric cryptographic key over a public channel and was one of the first public-key protocols as conceived by Ralph Merkle and named after Whitfield Diffie and Martin Hellman.
Key agreement and key transport are the two types of a key exchange scheme that are used to be remotely exchanged between entities . In a key agreement scheme, a secret key, which is used between the sender and the receiver to encrypt and decrypt information, is set up to be sent indirectly.
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. [1] [2] Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions.
The set of algorithms that cipher suites usually contain include: a key exchange algorithm, a bulk encryption algorithm, and a message authentication code (MAC) algorithm. [1] The key exchange algorithm is used to exchange a key between two devices. This key is used to encrypt and decrypt the messages being
Another method of key exchange involves encapsulating one key within another. Typically a master key is generated and exchanged using some secure method. This method is usually cumbersome or expensive (breaking a master key into multiple parts and sending each with a trusted courier for example) and not suitable for use on a larger scale. Once ...
In practice, asymmetric systems are used to first exchange a secret key, and then secure communication proceeds via a more efficient symmetric system using that key. [14] Examples of asymmetric systems include Diffie–Hellman key exchange, RSA (Rivest–Shamir–Adleman), ECC (Elliptic Curve Cryptography), and Post-quantum cryptography.
A key encapsulation mechanism, to securely transport a secret key from a sender to a receiver, consists of three algorithms: Gen, Encap, and Decap. Circles shaded blue—the receiver's public key and the encapsulation —can be safely revealed to an adversary, while boxes shaded red—the receiver's private key and the encapsulated secret key —must be kept secret.