Search results
Results from the WOW.Com Content Network
In statistics, Spearman's rank correlation coefficient or Spearman's ρ, named after Charles Spearman [1] and often denoted by the Greek letter (rho) or as , is a nonparametric measure of rank correlation (statistical dependence between the rankings of two variables).
The following results were obtained (simulated data): Contacted ... designs and based on Spearman's rank correlation coefficient was developed by Page. ...
A bivariate correlation is a measure of whether and how two variables covary linearly, that is, whether the variance of one changes in a linear fashion as the variance of the other changes. Covariance can be difficult to interpret across studies because it depends on the scale or level of measurement used.
Charles Spearman developed in 1904 a procedure for correcting correlations for regression dilution, [10] i.e., to "rid a correlation coefficient from the weakening effect of measurement error". [11] In measurement and statistics, the procedure is also called correlation disattenuation or the disattenuation of correlation. [12]
A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [ a ] The variables may be two columns of a given data set of observations, often called a sample , or two components of a multivariate random variable with a known distribution .
A rank correlation coefficient measures the degree of similarity between two rankings, and can be used to assess the significance of the relation between them. For example, two common nonparametric methods of significance that use rank correlation are the Mann–Whitney U test and the Wilcoxon signed-rank test .
The Spearman–Brown prediction formula, also known as the Spearman–Brown prophecy formula, is a formula relating psychometric reliability to test length and used by psychometricians to predict the reliability of a test after changing the test length. [1] The method was published independently by Spearman (1910) and Brown (1910). [2] [3]
Pearson/Spearman correlation coefficients between X and Y are shown when the two variables' ranges are unrestricted, and when the range of X is restricted to the interval (0,1). Most correlation measures are sensitive to the manner in which X and Y are sampled. Dependencies tend to be stronger if viewed over a wider range of values.