enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generalized trigonometry - Wikipedia

    en.wikipedia.org/wiki/Generalized_trigonometry

    Ordinary trigonometry studies triangles in the Euclidean plane ⁠ ⁠.There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle definitions, series definitions [broken anchor], definitions via differential equations [broken anchor], and definitions using functional equations.

  3. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    In 2015, an anonymous Japanese woman using the pen name "aerile re" published the first known method (the method of 3 circumcenters) to construct a proof in elementary geometry for a special class of adventitious quadrangles problem. [7] [8] [9] This work solves the first of the three unsolved problems listed by Rigby in his 1978 paper. [5]

  4. Lester's theorem - Wikipedia

    en.wikipedia.org/wiki/Lester's_theorem

    In 2000, Bernard Gibert proposed a generalization of the Lester Theorem involving the Kiepert hyperbola of a triangle. His result can be stated as follows: Every circle with a diameter that is a chord of the Kiepert hyperbola and perpendicular to the triangle's Euler line passes through the Fermat points. [11] [12]

  5. Droz-Farny line theorem - Wikipedia

    en.wikipedia.org/wiki/Droz-Farny_line_theorem

    Second generalization: Let a conic S and a point P on the plane. Construct three lines d a , d b , d c through P such that they meet the conic at A, A'; B, B' ; C, C' respectively. Let D be a point on the polar of point P with respect to (S) or D lies on the conic (S).

  6. Pick's theorem - Wikipedia

    en.wikipedia.org/wiki/Pick's_theorem

    Any triangle subdivides its bounding box into the triangle itself and additional right triangles, and the areas of both the bounding box and the right triangles are easy to compute. Combining these area computations gives Pick's formula for triangles, and combining triangles gives Pick's formula for arbitrary polygons. [7] [8] [13]

  7. Pappus's area theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_area_theorem

    Pappus's area theorem describes the relationship between the areas of three parallelograms attached to three sides of an arbitrary triangle. The theorem, which can also be thought of as a generalization of the Pythagorean theorem, is named after the Greek mathematician Pappus of Alexandria (4th century AD), who discovered it.

  8. Napoleon's theorem - Wikipedia

    en.wikipedia.org/wiki/Napoleon's_theorem

    Napoleon's theorem: If the triangles centered on L, M, N are equilateral, then so is the green triangle.. In geometry, Napoleon's theorem states that if equilateral triangles are constructed on the sides of any triangle, either all outward or all inward, the lines connecting the centres of those equilateral triangles themselves form an equilateral triangle.

  9. Bretschneider's formula - Wikipedia

    en.wikipedia.org/wiki/Bretschneider's_formula

    Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]