Search results
Results from the WOW.Com Content Network
There are two reasons actual sales can vary from planned sales: either the volume sold varied from the expected quantity, known as sales volume variance, or the price point at which units were sold differed from the expected price points, known as sales price variance. Both scenarios could also simultaneously contribute to the variance.
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
In statistics, the variance function is a smooth function that depicts the variance of a random quantity as a function of its mean.The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling.
Variance analysis can be carried out for both costs and revenues. Variance analysis is usually associated with explaining the difference (or variance) between actual costs and the standard costs allowed for the good output. For example, the difference in materials costs can be divided into a materials price variance and a materials usage variance.
Several are standard statistics that are used elsewhere - range, standard deviation, variance, mean deviation, coefficient of variation, median absolute deviation, interquartile range and quartile deviation. In addition to these several statistics have been developed with nominal data in mind.
In statistics and management science, a tracking signal monitors any forecasts that have been made in comparison with actuals, and warns when there are unexpected departures of the outcomes from the forecasts. Forecasts can relate to sales, inventory, or anything pertaining to an organization's future demand.
For a set of numbers {10, 15, 30, 45, 57, 52 63, 72, 81, 93, 102, 105}, if this set is the whole data population for some measurement, then variance is the population variance 932.743 as the sum of the squared deviations about the mean of this set, divided by 12 as the number of the set members.
In statistics, explained variation measures the proportion to which a mathematical model accounts for the variation of a given data set.Often, variation is quantified as variance; then, the more specific term explained variance can be used.