enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    In typed lambda calculus, functions can be applied only if they are capable of accepting the given input's "type" of data. Typed lambda calculi are strictly weaker than the untyped lambda calculus, which is the primary subject of this article, in the sense that typed lambda calculi can express less than the untyped calculus can. On the other ...

  3. de Bruijn index - Wikipedia

    en.wikipedia.org/wiki/De_Bruijn_index

    In mathematical logic, the de Bruijn index is a tool invented by the Dutch mathematician Nicolaas Govert de Bruijn for representing terms of lambda calculus without naming the bound variables. [1] Terms written using these indices are invariant with respect to α-conversion, so the check for α-equivalence is the same as that for syntactic ...

  4. Lambda calculus definition - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus_definition

    Lambda calculus is a formal mathematical system based on lambda abstraction and function application. Two definitions of the language are given here: a standard definition, and a definition using mathematical formulas.

  5. Church encoding - Wikipedia

    en.wikipedia.org/wiki/Church_encoding

    Scott encoding can be done in untyped lambda calculus, whereas its use with types requires a type system with recursion and type polymorphism. A list with element type E in this representation that is used to compute values of type C would have the following recursive type definition, where '=>' denotes function type:

  6. Calculus of constructions - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_constructions

    The CoC is a higher-order typed lambda calculus, initially developed by Thierry Coquand. It is well known for being at the top of Barendregt's lambda cube. It is possible within CoC to define functions from terms to terms, as well as terms to types, types to types, and types to terms. The CoC is strongly normalizing, and hence consistent. [1]

  7. Beta normal form - Wikipedia

    en.wikipedia.org/wiki/Beta_normal_form

    In the lambda calculus, a beta redex is a term of the form: [3] [4] (.). A redex is in head position in a term , if has the following shape (note that application has higher priority than abstraction, and that the formula below is meant to be a lambda-abstraction, not an application):

  8. Fixed-point combinator - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_combinator

    The Y combinator is an implementation of a fixed-point combinator in lambda calculus. Fixed-point combinators may also be easily defined in other functional and imperative languages. The implementation in lambda calculus is more difficult due to limitations in lambda calculus. The fixed-point combinator may be used in a number of different areas:

  9. Pollard's kangaroo algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard's_kangaroo_algorithm

    In computational number theory and computational algebra, Pollard's kangaroo algorithm (also Pollard's lambda algorithm, see Naming below) is an algorithm for solving the discrete logarithm problem. The algorithm was introduced in 1978 by the number theorist John M. Pollard , in the same paper as his better-known Pollard's rho algorithm for ...