enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Haversine formula - Wikipedia

    en.wikipedia.org/wiki/Haversine_formula

    The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.

  3. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...

  4. Bearing (navigation) - Wikipedia

    en.wikipedia.org/wiki/Bearing_(navigation)

    A standard Brunton compass, used commonly by geologists and surveyors to obtain a bearing in the field. In navigation, bearing or azimuth is the horizontal angle between the direction of an object and north or another object. The angle value can be specified in various angular units, such as degrees, mils, or grad. More specifically:

  5. Great-circle navigation - Wikipedia

    en.wikipedia.org/wiki/Great-circle_navigation

    If a navigator begins at P 1 = (φ 1,λ 1) and plans to travel the great circle to a point at point P 2 = (φ 2,λ 2) (see Fig. 1, φ is the latitude, positive northward, and λ is the longitude, positive eastward), the initial and final courses α 1 and α 2 are given by formulas for solving a spherical triangle

  6. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...

  7. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    The distance between any two points on the real line is the absolute value of the numerical difference of their coordinates, their absolute difference.Thus if and are two points on the real line, then the distance between them is given by: [1]

  8. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. [1] Angles in polar notation are generally expressed in either degrees or radians (2 π rad being equal to 360°).

  9. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Another generalization is to calculate the number of coprime integer solutions , to the inequality m 2 + n 2 ≤ r 2 . {\displaystyle m^{2}+n^{2}\leq r^{2}.\,} This problem is known as the primitive circle problem , as it involves searching for primitive solutions to the original circle problem. [ 9 ]