Search results
Results from the WOW.Com Content Network
An oxide (/ ˈ ɒ k s aɪ d /) is a chemical compound containing at least one oxygen atom and one other element [1] in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of –2) of oxygen, an O 2– ion with oxygen in the oxidation state of −2. Most of the Earth's crust consists of oxides. Even materials ...
In the periodic table, it appears between the lanthanides lanthanum to its left and praseodymium to its right, and above the actinide thorium. It is a ductile metal with a hardness similar to that of silver. [9] Its 58 electrons are arranged in the configuration [Xe]4f 1 5d 1 6s 2, of which the four outer electrons are valence electrons. [10]
Note that these electron configurations are given for neutral atoms in the gas phase, which are not the same as the electron configurations for the same atoms in chemical environments. In many cases, multiple configurations are within a small range of energies and the small irregularities that arise in the d- and f-blocks are quite irrelevant ...
Element Negative states Positive states Group Notes −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 Z; 1 hydrogen: H −1 +1: 1 2 helium: He 0 18
Here [Ne] refers to the core electrons which are the same as for the element neon (Ne), the last noble gas before phosphorus in the periodic table. The valence electrons (here 3s 2 3p 3) are written explicitly for all atoms. Electron configurations of elements beyond hassium (element 108) have never been measured; predictions are used below.
One example is that someone can use the charge of an ion to find the oxidation number of a monatomic ion. For example, the oxidation number of + is +1. This helps when trying to solve oxidation questions. A charge number also can help when drawing Lewis dot structures. For example, if the structure is an ion, the charge will be included outside ...
The form of the periodic table is closely related to the atomic electron configuration for each element. For example, all the elements of group 2 (the table's second column) have an electron configuration of [E] n s 2 (where [E] is a noble gas configuration), and have notable similarities in their chemical properties.
In a compound or ion, the sum of the oxidation states equals the total charge of the compound or ion. Fluorine in compounds has OS = −1; this extends to chlorine and bromine only when not bonded to a lighter halogen, oxygen or nitrogen. Group 1 and group 2 metals in compounds have OS = +1 and +2, respectively.