Search results
Results from the WOW.Com Content Network
Sometimes this remainder is added to the quotient as a fractional part, so 10 / 3 is equal to 3 + 1 / 3 or 3.33..., but in the context of integer division, where numbers have no fractional part, the remainder is kept separately (or exceptionally, discarded or rounded). [5] When the remainder is kept as a fraction, it leads to a rational ...
Take each digit of the number (371) in reverse order (173), multiplying them successively by the digits 1, 3, 2, 6, 4, 5, repeating with this sequence of multipliers as long as necessary (1, 3, 2, 6, 4, 5, 1, 3, 2, 6, 4, 5, ...), and adding the products (1×1 + 7×3 + 3×2 = 1 + 21 + 6 = 28). The original number is divisible by 7 if and only if ...
43 = (−9) × (−5) + (−2) and −2 is the least absolute remainder. In the division of 42 by 5, we have: 42 = 8 × 5 + 2, and since 2 < 5/2, 2 is both the least positive remainder and the least absolute remainder. In these examples, the (negative) least absolute remainder is obtained from the least positive remainder by subtracting 5 ...
The first number to be divided by the divisor (4) is the partial dividend (9). One writes the integer part of the result (2) above the division bar over the leftmost digit of the dividend, and one writes the remainder (1) as a small digit above and to the right of the partial dividend (9).
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
The next digit of the dividend (the last 0 in 500) is copied directly below itself and next to the remainder 2 to form 20. Then the largest number by which the divisor 4 can be multiplied without exceeding 20, which is 5, is placed above as the third leftmost quotient digit.
17 is divided into 3 groups of 5, with 2 as leftover. Here, the dividend is 17, the divisor is 3, the quotient is 5, and the remainder is 2 (which is strictly smaller than the divisor 3), or more symbolically, 17 = (3 × 5) + 2.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.