Search results
Results from the WOW.Com Content Network
Ammonia solution, also known as ammonia water, ammonium hydroxide, ammoniacal liquor, ammonia liquor, aqua ammonia, aqueous ammonia, or (inaccurately) ammonia, is a solution of ammonia in water. It can be denoted by the symbols NH 3 (aq). Although the name ammonium hydroxide suggests a salt with the composition [NH + 4][OH −
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .
The reducible representation of the bonding of water with C 2v symmetry. An initial assumption is that the number of molecular orbitals is equal to the number of atomic orbitals included in the linear expansion. In a sense, n atomic orbitals combine to form n molecular orbitals, which can be numbered i = 1 to n and which may not all be the same.
Diffusion flux, the rate of movement of molecules across a unit area (mol·m −2 ·s −1). (Fick's law of diffusion) [7] Volumetric flux, the rate of volume flow across a unit area (m 3 ·m −2 ·s −1). (Darcy's law of groundwater flow) Mass flux, the rate of mass flow across a unit area (kg·m −2 ·s −1). (Either an alternate form of ...
2), and water (H 2 O). A reductant, typically anhydrous ammonia (NH 3), aqueous ammonia (NH 4 OH), or a urea (CO(NH 2) 2) solution, is added to a stream of flue or exhaust gas and is reacted onto a catalyst. As the reaction drives toward completion, nitrogen (N 2), and carbon dioxide (CO 2), in the case of urea use, are produced. Selective ...
MIKE SHE is a watershed-scale physically based, spatially distributed model for water flow and sediment transport. Flow and transport processes are represented by either finite difference representations of partial differential equations or by derived empirical equations. The following principal submodels are involved:
For a compressible fluid in a tube the volumetric flow rate Q(x) and the axial velocity are not constant along the tube; but the mass flow rate is constant along the tube length. The volumetric flow rate is usually expressed at the outlet pressure. As fluid is compressed or expanded, work is done and the fluid is heated or cooled.
The area required to calculate the mass flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface, e.g. for substances passing through a filter or a membrane, the real surface is the (generally curved) surface area of the filter, macroscopically - ignoring the area spanned by the holes in the filter/membrane ...