Ads
related to: sum of agp calculator for water flow rate meter
Search results
Results from the WOW.Com Content Network
This depth is converted to a flow rate according to a theoretical formula of the form = where is the flow rate, is a constant, is the water level, and is an exponent which varies with the device used; or it is converted according to empirically derived level/flow data points (a "flow curve"). The flow rate can then be integrated over time into ...
A compound meter is used where high flow rates are necessary, but where at times there are also smaller rates of flow that need to be accurately measured. Compound meters have two measuring elements and a check valve to regulate flow between them. At high flow rates, water is normally diverted primarily or completely to the high flow element.
Only the upstream depth needs to be measured to calculate the flow rate. A free flow also induces a hydraulic jump downstream of the flume. Submerged flow occurs when the water surface downstream of the flume is high enough to restrict flow through a flume, submerged flume conditions exist. A backwater buildup effect occurs in a submerged flume.
Most modern meters combine a venturi flow rate meter, with a gamma densitometer, and some meters have additional measurements for water salinity. The meter measures the flow rates at line pressures, which are typically orders of magnitude greater than atmospheric pressure, but the meter must report the oil and gas volumes at standard ...
This can be used to calculate mean values (expectations) of the flow rates, head losses or any other variables of interest in the pipe network. This analysis has been extended using a reduced-parameter entropic formulation, which ensures consistency of the analysis regardless of the graphical representation of the network. [3]
h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 deg C)
In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.
The Hardy Cross method assumes that the flow going in and out of the system is known and that the pipe length, diameter, roughness and other key characteristics are also known or can be assumed. [1] The method also assumes that the relation between flow rate and head loss is known, but the method does not require any particular relation to be used.
Ads
related to: sum of agp calculator for water flow rate meter