Search results
Results from the WOW.Com Content Network
lumen second per cubic metre lm⋅s/m 3: L −3 ⋅T⋅J: Luminous efficacy (of radiation) K: lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to radiant flux: Luminous efficacy (of a source) η [nb 3] lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to power consumption Luminous efficiency ...
The term candlepower was originally defined in the United Kingdom, by the Metropolitan Gas Act 1860, as the light produced by a pure spermaceti candle that weighs 1 ⁄ 6 pound (76 grams) and burns at a rate of 120 grains per hour (7.8 grams per hour).
The lumen (symbol: lm) is the unit of luminous flux, a measure of the perceived power of visible light emitted by a source, in the International System of Units (SI). Luminous flux differs from power ( radiant flux ), which encompasses all electromagnetic waves emitted, including non-visible ones such as thermal radiation ( infrared ).
lumen second per cubic metre lm⋅s/m 3: L −3 ⋅T⋅J: Luminous efficacy (of radiation) K: lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to radiant flux: Luminous efficacy (of a source) η [nb 3] lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to power consumption Luminous efficiency ...
lumen second per cubic metre lm⋅s/m 3: L −3 ⋅T⋅J: Luminous efficacy (of radiation) K: lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to radiant flux: Luminous efficacy (of a source) η [nb 3] lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to power consumption Luminous efficiency ...
The sensitivity of the human eye to various wavelengths. Assuming each wavelength equals 1 watt of radiant energy, only the center wavelength is perceived as 683 candelas (1 watt of luminous energy), equaling 683 lumens. The vertical colored-lines represent the 589 (yellow) sodium line, and popular 532 nm (green), 671 nm (red), 473 nm (blue ...
For example, a 100-watt, 1000 hour, 120-volt lamp will produce about 17.1 lumens per watt. A similar lamp designed for 230 V would produce only around 12.8 lumens per watt, and one designed for 30 volts (train lighting) would produce as much as 19.8 lumens per watt. [76] Lower voltage lamps have a thicker filament, for the same power rating.
Power is the rate at which energy is generated or consumed and hence is measured in units (e.g. watts) that represent energy per unit time. For example, when a light bulb with a power rating of 100 W is turned on for one hour, the energy used is 100 watt hours (W·h), 0.1 kilowatt hour, or 360 kJ. This same amount of energy would light a 40 ...