Search results
Results from the WOW.Com Content Network
Usage of integration expanded to a wide variety of scientific fields thereafter. A definite integral computes the signed area of the region in the plane that is bounded by the graph of a given function between two points in the real line. Conventionally, areas above the horizontal axis of the plane are positive while areas below are negative.
It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.
The term "numerical integration" first appears in 1915 in the publication A Course in Interpolation and Numeric Integration for the Mathematical Laboratory by David Gibb. [2] "Quadrature" is a historical mathematical term that means calculating area. Quadrature problems have served as one of the main sources of mathematical analysis.
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
The Gaussian quadrature chooses more suitable points instead, so even a linear function approximates the function better (the black dashed line). As the integrand is the polynomial of degree 3 (y(x) = 7x 3 – 8x 2 – 3x + 3), the 2-point Gaussian quadrature rule even returns an exact result.
Horizontal integration and vertical integration, in microeconomics and strategic management, styles of ownership and control; Regional integration, in which states cooperate through regional institutions and rules; Integration clause, a declaration that a contract is the final and complete understanding of the parties
An illustration of Monte Carlo integration. In this example, the domain D is the inner circle and the domain E is the square. Because the square's area (4) can be easily calculated, the area of the circle (π*1.0 2) can be estimated by the ratio (0.8) of the points inside the circle (40) to the total number of points (50), yielding an approximation for the circle's area of 4*0.8 = 3.2 ≈ π.
Composite Simpson's 3/8 rule is even less accurate. Integration by Simpson's 1/3 rule can be represented as a weighted average with 2/3 of the value coming from integration by the trapezoidal rule with step h and 1/3 of the value coming from integration by the rectangle rule with step 2h. The accuracy is governed by the second (2h step) term.