Search results
Results from the WOW.Com Content Network
A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, ... Not all decimal fractions can be represented in a finite digit binary fraction ...
The first 32 rows of Pascal's triangle read as single binary numbers represent the 32 divisors that belong to this number, which is also the number of sides of all odd-sided constructible polygons with simple tools alone (if the monogon is also included). [10] There are also a total of 32 uniform colorings to the 11 regular and semiregular ...
That is, the value of an octal "10" is the same as a decimal "8", an octal "20" is a decimal "16", and so on. In a hexadecimal system, there are 16 digits, 0 through 9 followed, by convention, with A through F. That is, a hexadecimal "10" is the same as a decimal "16" and a hexadecimal "20" is the same as a decimal "32".
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".
A 32-bit register can store 2 32 different values. The range of integer values that can be stored in 32 bits depends on the integer representation used. With the two most common representations, the range is 0 through 4,294,967,295 (2 32 − 1) for representation as an binary number, and −2,147,483,648 (−2 31) through 2,147,483,647 (2 31 − 1) for representation as two's complement.
To change 1 / 3 to a decimal, divide 1.000... by 3 (" 3 into 1.000... "), and stop when the desired accuracy is obtained, e.g., at 4 decimals with 0.3333. The fraction 1 / 4 can be written exactly with two decimal digits, while the fraction 1 / 3 cannot be written exactly as a
Any such decimal fraction, i.e.: d n = 0 for n > N, may be converted to its equivalent infinite decimal expansion by replacing d N by d N − 1 and replacing all subsequent 0s by 9s (see 0.999...). In summary, every real number that is not a decimal fraction has a unique infinite decimal expansion.