enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Free monoid - Wikipedia

    en.wikipedia.org/wiki/Free_monoid

    The free partially commutative monoid, or trace monoid, is a generalization that encompasses both the free and free commutative monoids as instances. This generalization finds applications in combinatorics and in the study of parallelism in computer science .

  3. Monoid - Wikipedia

    en.wikipedia.org/wiki/Monoid

    In computer science and computer programming, the set of strings built from a given set of characters is a free monoid. Transition monoids and syntactic monoids are used in describing finite-state machines. Trace monoids and history monoids provide a foundation for process calculi and concurrent computing.

  4. Presentation of a monoid - Wikipedia

    en.wikipedia.org/wiki/Presentation_of_a_monoid

    The monoid is then presented as the quotient of the free monoid (or the free semigroup) by these relations. This is an analogue of a group presentation in group theory . As a mathematical structure, a monoid presentation is identical to a string rewriting system (also known as a semi-Thue system).

  5. Free object - Wikipedia

    en.wikipedia.org/wiki/Free_object

    A simpler example are the free monoids. The free monoid on a set X, is the monoid of all finite strings using X as alphabet, with operation concatenation of strings. The identity is the empty string. In essence, the free monoid is simply the set of all words, with no equivalence relations imposed.

  6. Monoid (category theory) - Wikipedia

    en.wikipedia.org/wiki/Monoid_(category_theory)

    A monoid object in the category of monoids (with the direct product of monoids) is just a commutative monoid. This follows easily from the Eckmann–Hilton argument. A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the Cartesian product) is a unital quantale.

  7. Trace monoid - Wikipedia

    en.wikipedia.org/wiki/Trace_monoid

    Let denote the free monoid on a set of generators , that is, the set of all strings written in the alphabet .The asterisk is a standard notation for the Kleene star.An independency relation on the alphabet then induces a symmetric binary relation on the set of strings : two strings , are related, , if and only if there exist ,, and a pair (,) such that = and =.

  8. Rational monoid - Wikipedia

    en.wikipedia.org/wiki/Rational_monoid

    A finite monoid is rational. A group is a rational monoid if and only if it is finite.; A finitely generated free monoid is rational. The monoid M4 generated by the set {0,e, a,b, x,y} subject to relations in which e is the identity, 0 is an absorbing element, each of a and b commutes with each of x and y and ax = bx, ay = by = bby, xx = xy = yx = yy = 0 is rational but not automatic.

  9. Monoid factorisation - Wikipedia

    en.wikipedia.org/wiki/Monoid_factorisation

    The Schützenberger theorem relates the definition in terms of a multiplicative property to an additive property. [clarification needed] Let A ∗ be the free monoid on an alphabet A. Let X i be a sequence of subsets of A ∗ indexed by a totally ordered index set I. A factorisation of a word w in A ∗ is an expression