Search results
Results from the WOW.Com Content Network
Stabilizing selection (not to be confused with negative or purifying selection [1] [2]) is a type of natural selection in which the population mean stabilizes on a particular non-extreme trait value. This is thought to be the most common mechanism of action for natural selection because most traits do not appear to change drastically over time ...
Disruptive selection is a specific type of natural selection that actively selects against the intermediate in a population, favoring both extremes of the spectrum. Disruptive selection is inferred to oftentimes lead to sympatric speciation through a phyletic gradualism mode of evolution. Disruptive selection can be caused or influenced by ...
In a study of the fresh-water Eurasian perch, a change in fitness was reported with a change in their density. An estimate of the selection gradient by linear and quadratic regression indicated a shift of the selection regime between stabilizing and directional selection at low density to disruptive selection at higher density. [11]
Middle (Graph 2) represents stabilizing selection with the moderate trait favored. Bottom (Graph 3) represents disruptive selection with both extremes being favored. In population genetics , directional selection is a type of natural selection in which one extreme phenotype is favored over both the other extreme and moderate phenotypes.
Selection can be divided into three classes, on the basis of its effect on allele frequencies: directional, stabilizing, and disruptive selection. [103] Directional selection occurs when an allele has a greater fitness than others, so that it increases in frequency, gaining an increasing share in the population.
In natural selection, negative selection [1] or purifying selection is the selective removal of alleles that are deleterious. This can result in stabilising selection through the purging of deleterious genetic polymorphisms that arise through random mutations.
It is the selection against the heterozygote, causing disruptive selection [2] and divergent genotypes. Underdominance exists in situations where the heterozygotic genotype is inferior in fitness to either the dominant or recessive homozygotic genotype.
Frequency-dependent selection may explain the high degree of polymorphism in the MHC. [12] In behavioral ecology, negative frequency-dependent selection often maintains multiple behavioral strategies within a species. A classic example is the Hawk-Dove model of interactions among individuals in a population.