Search results
Results from the WOW.Com Content Network
The additive persistence of 2718 is 2: first we find that 2 + 7 + 1 + 8 = 18, and then that 1 + 8 = 9. The multiplicative persistence of 39 is 3, because it takes three steps to reduce 39 to a single digit: 39 → 27 → 14 → 4. Also, 39 is the smallest number of multiplicative persistence 3.
SQL includes operators and functions for calculating values on stored values. SQL allows the use of expressions in the select list to project data, as in the following example, which returns a list of books that cost more than 100.00 with an additional sales_tax column containing a sales tax figure calculated at 6% of the price.
For example, the composition of Employee and Dept is their join as shown above, projected on all but the common attribute DeptName. In category theory, the join is precisely the fiber product. The natural join is arguably one of the most important operators since it is the relational counterpart of the logical AND operator.
More formally, multiplying two n-digit numbers using long multiplication requires Θ(n 2) single-digit operations (additions and multiplications). When implemented in software, long multiplication algorithms must deal with overflow during additions, which can be expensive.
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
Set operations in SQL is a type of operations which allow the results of multiple queries to be combined into a single result set. [1] Set operators in SQL include UNION, INTERSECT, and EXCEPT, which mathematically correspond to the concepts of union, intersection and set difference.
For example, the following algorithm is a direct implementation to compute the function A(x) = (x−1) / (exp(x−1) − 1) which is well-conditioned at 1.0, [nb 12] however it can be shown to be numerically unstable and lose up to half the significant digits carried by the arithmetic when computed near 1.0.
The formal definition of an arithmetic shift, from Federal Standard 1037C is that it is: . A shift, applied to the representation of a number in a fixed radix numeration system and in a fixed-point representation system, and in which only the characters representing the fixed-point part of the number are moved.