Search results
Results from the WOW.Com Content Network
The tidyverse is a collection of open source packages for the R programming language introduced by Hadley Wickham [1] and his team that "share an underlying design philosophy, grammar, and data structures" of tidy data. [2] Characteristic features of tidyverse packages include extensive use of non-standard evaluation and encouraging piping. [3 ...
dplyr is an R package whose set of functions are designed to enable dataframe (a spreadsheet-like data structure) manipulation in an intuitive, user-friendly way. It is one of the core packages of the popular tidyverse set of packages in the R programming language. [1]
Hadley Alexander Wickham (born 14 October 1979) is a New Zealand statistician known for his work on open-source software for the R statistical programming environment.He is the chief scientist at Posit PBC and an adjunct professor of statistics at the University of Auckland, Stanford University, and Rice University.
Update database and/or update model No Navicat Data Modeler Conceptual, Logical & Physical IE (Crow’s foot) Yes Yes Update database and/or update model No NORMA Object-Role modeling Conceptual (ORM), Logical, Physical ORM, Relational(Crow’s foot option), Barker Yes Yes Update database and/or update model No Open ModelSphere
ggplot2 is an open-source data visualization package for the statistical programming language R.Created by Hadley Wickham in 2005, ggplot2 is an implementation of Leland Wilkinson's Grammar of Graphics—a general scheme for data visualization which breaks up graphs into semantic components such as scales and layers. ggplot2 can serve as a replacement for the base graphics in R and contains a ...
R logo. R packages are extensions to the R statistical programming language.R packages contain code, data, and documentation in a standardised collection format that can be installed by users of R, typically via a centralised software repository such as CRAN (the Comprehensive R Archive Network).
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. [1] In the context of machine learning and more generally statistical analysis, this may be the selection of a statistical model from a set of candidate models, given data. In the simplest cases, a pre ...